Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues

被引:8
作者
Leigh, Steven Y. [1 ]
Chen, Ye [1 ]
Liu, Jonathan T. C. [1 ]
机构
[1] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
关键词
OF-CARE PATHOLOGY; ILLUMINATION MICROSCOPY; COHERENCE TOMOGRAPHY; PERFORMANCE; RESOLUTION; BRAIN;
D O I
10.1364/BOE.5.001709
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively 'labels' in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues. (C) 2014 Optical Society of America
引用
收藏
页码:1709 / 1720
页数:12
相关论文
共 29 条
[1]   Multicolor super-resolution imaging with photo-switchable fluorescent probes [J].
Bates, Mark ;
Huang, Bo ;
Dempsey, Graham T. ;
Zhuang, Xiaowei .
SCIENCE, 2007, 317 (5845) :1749-1753
[2]   Nanoscopy in a Living Mouse Brain [J].
Berning, Sebastian ;
Willig, Katrin I. ;
Steffens, Heinz ;
Dibaj, Payam ;
Hell, Stefan W. .
SCIENCE, 2012, 335 (6068) :551-551
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Fluorescence coherence tomography [J].
Bilenca, A. ;
Ozcan, A. ;
Bouma, B. ;
Tearney, G. .
OPTICS EXPRESS, 2006, 14 (16) :7134-7143
[5]   Imaging the body with diffuse optical tomography [J].
Boas, DA ;
Brooks, DH ;
Miller, EL ;
DiMarzio, CA ;
Kilmer, M ;
Gaudette, RJ ;
Zhang, Q .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :57-75
[6]   Focal modulation microscopy [J].
Chen, Nanguang ;
Wong, Chee-Howe ;
Sheppard, Colin J. R. .
OPTICS EXPRESS, 2008, 16 (23) :18764-18769
[7]   Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations [J].
Chen, Ye ;
Wang, Danni ;
Liu, Jonathan T. C. .
OPTICS LETTERS, 2012, 37 (21) :4495-4497
[8]   Role of tissue stroma in cancer cell invasion [J].
De Wever, O ;
Mareel, M .
JOURNAL OF PATHOLOGY, 2003, 200 (04) :429-447
[9]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[10]   Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media [J].
Fahrbach, Florian O. ;
Rohrbach, Alexander .
NATURE COMMUNICATIONS, 2012, 3