The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response

被引:89
作者
Rani, V. V. Divya [1 ]
Manzoor, K. [1 ]
Menon, Deepthy [1 ]
Selvamurugan, N. [1 ]
Nair, Shantikumar V. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Inst Med Sci & Res Ctr, Amrita Ctr Nanosci, Cochin 682026, Kerala, India
关键词
CELL-MATRIX ADHESIONS/; DYNAMICS; ZNO; ADSORPTION; MORPHOLOGY; ROUGHNESS; SUBSTRATE; SYMMETRY; GROWTH;
D O I
10.1088/0957-4484/20/19/195101
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report an interesting cell response to novel nanostructures formed on a titanium (Ti) surface by a simple non-lithographic bottom-up method. The surface topography of bio-implant materials dramatically influences their cell response. The aim of this study was to modify the surface of a titanium implant by a simple and cost effective processing technique and to determine its suitability for osteoblast attachment. A set of unique structures ranging from mesoporous nanoscaffolds, nanoflowers, nanoneedles, nanorods and octahedral bipyramids were fabricated by systematically tuning the hydrothermal conditions such as reaction medium composition, concentration, temperature and time duration. The cytotoxicity of surface modified Ti was assessed using human primary osteoblastic cells, and more than 90% of the cells were found to be viable after 24 h of incubation. Protein adsorption studies revealed that the surface modified nanostructures on titanium adsorbed more proteins, suggesting that they are capable of promoting cell adhesion/attachment. Immunofluorescence studies with vinculin antibody identified a distinctly different spread pattern of osteoblastic cells on hydrothermally modified nanostructured surfaces, indicating the formation of the focal adhesion points required for intracellular signaling. Thus, based on our results, we suggest that this study may present one of the best designs and systematic syntheses of biocompatible nanostructures on metallic Ti for orthopedic implant applications.
引用
收藏
页数:11
相关论文
共 34 条
[1]  
BALLARD JD, 2006, WILEY ENCY BIOMEDICA, DOI DOI 10.1002/9780471740360.EBS0815
[2]  
BALU HM, 1991, J CELL BIOL, P112
[3]   Synthesis of TiO2-based nanotube on Ti substrate by hydrothermal treatment [J].
Chi, Bo ;
Victorio, Erick S. ;
Jin, Tetsuro .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (02) :668-672
[4]   Nantotechniques and approaches in biotechnology [J].
Curtis, A ;
Wilkinson, C .
TRENDS IN BIOTECHNOLOGY, 2001, 19 (03) :97-101
[5]   Cells react to nanoscale order and symmetry in their surroundings [J].
Curtis, ASG ;
Gadegaard, N ;
Dalby, MJ ;
Riehle, MO ;
Wilkinson, CDW ;
Aitchison, G .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3 (01) :61-65
[6]   Nanomechanotransduction and interphase nuclear organization influence on genomic control [J].
Dalby, Matthew J. ;
Gadegaard, Nikolaj ;
Herzyk, Pawel ;
Sutherland, Duncan ;
Agheli, Hossein ;
Wilkinson, Chris D. W. ;
Curtis, Adam S. G. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2007, 102 (05) :1234-1244
[7]   The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder [J].
Dalby, Matthew J. ;
Gadegaard, Nikolaj ;
Tare, Rahul ;
Andar, Abhay ;
Riehle, Mathis O. ;
Herzyk, Pawel ;
Wilkinson, Chris D. W. ;
Oreffo, Richard O. C. .
NATURE MATERIALS, 2007, 6 (12) :997-1003
[8]   Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning [J].
Dalby, Matthew J. ;
Biggs, Manus J. P. ;
Gadegaard, Nikolaj ;
Kalna, Gabriela ;
Wilkinson, Chris D. W. ;
Curtis, Adam S. G. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2007, 100 (02) :326-338
[9]   Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption [J].
Deligianni, DD ;
Katsala, N ;
Ladas, S ;
Sotiropoulou, D ;
Amedee, J ;
Missirlis, YF .
BIOMATERIALS, 2001, 22 (11) :1241-1251
[10]  
Diener A, 2005, BIOMATERIALS, V26, P383, DOI [10.1016/j.biomaterials.2004.02.038, 10.1016/j.biomaterials.2004.02.019]