A New Method for Flicker Severity Forecast

被引:0
作者
Lu, H. J. [1 ]
Chang, G. W. [1 ]
Su, H. J. [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621, Taiwan
来源
2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES) | 2013年
关键词
Electric arc furnace; voltage fluctuation; neural network; grey theory; prediction; SELECTION; NETWORKS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Precisely forecasting the flicker level is important for drastic voltage fluctuations associated with the rapid reactive power consumptions of electric arc furnace (EAF) loads. This paper presents a prediction model based on grey theory combined with radial basis function neural network (RBFNN) for the forecast of flicker severity caused by the operation of a dc and an ac EAF loads, respectively. Test results based on the proposed model are compared with two other neural network methods. It shows that more accurate forecast is achieved for the flicker prediction based on the proposed method.
引用
收藏
页数:5
相关论文
共 16 条
  • [1] [Anonymous], 1999, GUID QUAL EL SUPPL I
  • [2] Forecasting Flicker Severity by Grey Predictor
    Chang, G. W.
    Lu, H. J.
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2012, 27 (04) : 2428 - 2430
  • [3] Clustering-based symmetric radial basis function beamforming
    Chen, S.
    Labib, K.
    Hanzo, L.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (09) : 589 - 592
  • [4] Gradient radial basis function networks for nonlinear and nonstationary time series prediction
    Chng, ES
    Chen, S
    Mulgrew, B
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01): : 190 - 194
  • [5] Grey predictor for wind energy conversion systems output power prediction
    El-Fouly, T. H. M.
    El-Saadany, E. F.
    Salama, M. M. A.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) : 1450 - 1452
  • [6] Automatic basis selection techniques for RBF networks
    Ghodsi, A
    Schumnans, D
    [J]. NEURAL NETWORKS, 2003, 16 (5-6) : 809 - 816
  • [7] Haykin S., 1999, Neural Networks: A Comprehensive Foundation, DOI DOI 10.1017/S0269888998214044
  • [8] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [9] Jayawardena A. W., 1998, Computer-Aided Civil and Infrastructure Engineering, V13, P91, DOI 10.1111/0885-9507.00089
  • [10] On the construction and training of reformulated radial basis function neural networks
    Karayiannis, NB
    Randolph-Gips, MM
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04): : 835 - 846