OPTIMAL CONTROL WITH Lp(Ω), p ε [0,1), CONTROL COST

被引:35
作者
Ito, Kazufumi [1 ]
Kunisch, Karl [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Karl Franzens Univ Graz, Inst Math & Wissenscahftl Rechnen, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
L-0; minimization; optimal control; bang-bang control; sparsity optimization; maximum principle; nonsmooth optimization; primal-dual active set method; ELLIPTIC CONTROL-PROBLEMS; ALGORITHM;
D O I
10.1137/120896529
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
L-p optimal control with p is an element of [0, 1) is investigated. The difficulty of natural lack of convexity and thus of weak lower semicontinuity is addressed by introducing appropriately chosen regularization terms. Existence results and necessary optimality conditions are obtained, and convergence of a monotone scheme is proved. Special attention is given to the particular case of optimal control problems with quadratic tracking and regularized L-0 control costs are given. A maximum principle is derived and existence of controls, in some cases relaxed controls, is proved, and an estimate on the consequences of relaxation are estimated.
引用
收藏
页码:1251 / 1275
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], 1999, CLASSICS APPL MATH
[4]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[5]   AN EXTENSION OF PONTRYAGINS PRINCIPLE FOR STATE-CONSTRAINED OPTIMAL-CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS AND VARIATIONAL-INEQUALITIES [J].
BONNANS, F ;
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :274-298
[6]  
BREDIES K., 2010, MATH BILDVERARBEITUN
[7]  
Casas E., 1995, Differential Integral Equations, V8, P1
[8]   OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L1 COST FUNCTIONAL [J].
Casas, Eduardo ;
Herzog, Roland ;
Wachsmuth, Gerd .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (03) :795-820
[9]   A DUALITY-BASED APPROACH TO ELLIPTIC CONTROL PROBLEMS IN NON-REFLEXIVE BANACH SPACES [J].
Clason, Christian ;
Kunisch, Karl .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (01) :243-266
[10]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457