ZIF-derived porous carbon: a promising supercapacitor electrode material

被引:172
作者
Zhang, Peng [1 ]
Sun, Fang [1 ]
Shen, Zhigang [1 ]
Cao, Dapeng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
关键词
ZEOLITIC-IMIDAZOLATE-FRAMEWORK; NITROGEN-DOPED GRAPHENE; METAL-ORGANIC FRAMEWORK; HIGH-PERFORMANCE; DIRECT CARBONIZATION; NANOPOROUS CARBONS; OXYGEN REDUCTION; ENERGY-STORAGE; GRAPHITIC CARBON; NANOSHEETS;
D O I
10.1039/c4ta00475b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of ZIF-derived porous carbon materials are prepared via co-carbonization of ZIF-7 and additional carbon sources, such as glucose, ethylene glycol, glycerol and furfuryl alcohol. Results indicate that ZIF-7/glucose composite-derived Carbon-L-950 as an electrode for the electrochemical capacitor exhibits a high specific capacitance of 228 F g(-1) in 6 M KOH at a current density of 0.1 A g(-1), even 178 F g(-1) at a high current of 10 A g(-1) and good stability over 5000 cycles. Moreover, the conductive agent (like acetylene black) is not required in the preparation process of the working electrode, which not only lowers the preparation costs but also is favorable for stability and performance. This facile fabrication of ZIF-derived porous carbon materials may open up a new avenue for producing a new family of porous carbon materials for advanced energy storage devices, such as fuel cells, supercapacitors and lithium batteries.
引用
收藏
页码:12873 / 12880
页数:8
相关论文
共 49 条
[1]   Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework [J].
Almasoudi, A. ;
Mokaya, R. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :146-152
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[4]   MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent [J].
Banerjee, Abhik ;
Gokhale, Rohan ;
Bhatnagar, Sumit ;
Jog, Jyoti ;
Bhardwaj, Monika ;
Lefez, Benoit ;
Hannoyer, Beatrice ;
Ogale, Satishchandra .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (37) :19694-19699
[5]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[6]   Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials [J].
Cao, Dapeng ;
Lan, Jianhui ;
Wang, Wenchuan ;
Smit, Berend .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (26) :4730-4733
[7]   A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications [J].
Chaikittisilp, Watcharop ;
Ariga, Katsuhiko ;
Yamauchi, Yusuke .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :14-19
[8]   Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes [J].
Chaikittisilp, Watcharop ;
Hu, Ming ;
Wang, Hongjing ;
Huang, Hou-Sheng ;
Fujita, Taketoshi ;
Wu, Kevin C. -W. ;
Chen, Lin-Chi ;
Yamauchi, Yusuke ;
Ariga, Katsuhiko .
CHEMICAL COMMUNICATIONS, 2012, 48 (58) :7259-7261
[9]   Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors [J].
Choi, Bong Gill ;
Hong, Jinkee ;
Hong, Won Hi ;
Hammond, Paula T. ;
Park, HoSeok .
ACS NANO, 2011, 5 (09) :7205-7213
[10]   High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J].
Fan, Li-Zhen ;
Hu, Yong-Sheng ;
Maier, Joachim ;
Adelhelm, Philipp ;
Smarsly, Bernd ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3083-3087