Computational aspects of morphological instabilities using isogeometric analysis

被引:27
作者
Dortdivanlioglu, Berkin [1 ]
Javili, Ali [1 ]
Linder, Christian [1 ]
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Morphological instabilities; Isogeometric analysis; Wrinkling; Period-doubling; Eigenvalue analysis; LOCAL REFINEMENT; FINITE-ELEMENTS; PHASE-DIAGRAM; THIN-FILMS; MECHANICS; WRINKLES; GROWTH; HOMOGENIZATION; PATTERNS; MODEL;
D O I
10.1016/j.cma.2016.06.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Morphological instabilities play a crucial role in the behavior of living systems as well as advanced engineering applications. Such instabilities initiate when a thin stiff film on a compliant substrate is subject to compressive stresses. For bilayer systems, the first mode of instability is sinusoidal wrinkling. While the critical conditions to induce wrinkling are extensively studied, the more complex patterns formed beyond wrinkling remain elusive and poorly understood. The objective of this contribution is to establish a generic computational framework capable of capturing various instabilities, using isogeometric analysis (IGA) enhanced with a concurrent eigenvalue analysis. It is shown that the eigenvalue analysis provides quantitatively accurate predictions for the onset of instabilities. In addition, the results are compared with the standard finite element analysis (PEA) and it is clearly observed that IGA furnishes significantly more accurate results compared to FEA, for the same number of degrees of freedom. We believe that this generic framework is widely applicable to advance our understanding of emergence and evolution of morphological instabilities for a rich variety of applications in soft materials and living systems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 279
页数:19
相关论文
共 94 条
[1]  
Allen H. G., 2013, ANAL DESIGN STRUCTUR
[2]   Perspectives on biological growth and remodeling [J].
Ambrosi, D. ;
Ateshian, G. A. ;
Arruda, E. M. ;
Cowin, S. C. ;
Dumais, J. ;
Goriely, A. ;
Holzapfel, G. A. ;
Humphrey, J. D. ;
Kemkemer, R. ;
Kuhl, E. ;
Olberding, J. E. ;
Taber, L. A. ;
Garikipati, K. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :863-883
[3]  
[Anonymous], NAT PHYS
[4]   Innovative and efficient stent flexibility simulations based on isogeometric analysis [J].
Auricchio, F. ;
Conti, M. ;
Ferraro, M. ;
Morganti, S. ;
Reali, A. ;
Taylor, R. L. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :347-361
[5]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[6]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[7]   FOLDING INSTABILITY OF A LAYERED VISCOELASTIC MEDIUM UNDER COMPRESSION [J].
BIOT, MA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 242 (1231) :444-454
[8]   Wrinkle to fold transition: influence of the substrate response [J].
Brau, Fabian ;
Damman, Pascal ;
Diamant, Haim ;
Witten, Thomas A. .
SOFT MATTER, 2013, 9 (34) :8177-8186
[9]   Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators [J].
Brau, Fabian ;
Vandeparre, Hugues ;
Sabbah, Abbas ;
Poulard, Christophe ;
Boudaoud, Arezki ;
Damman, Pascal .
NATURE PHYSICS, 2011, 7 (01) :56-60
[10]  
Budday S., 2015, PHILOS MAG, P37