Identification of inrush currents in power transformers based on higher-order statistics

被引:36
|
作者
Zhang, L. L. [1 ]
Wu, Q. H. [1 ,2 ]
Ji, T. Y. [1 ]
Zhang, A. Q. [1 ]
机构
[1] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
中国博士后科学基金;
关键词
Higher-order statistics; Power transformer; Differential protection; Magnetizing inrush; Internal fault; MAGNETIZING INRUSH; INTERNAL FAULTS; DIFFERENTIAL PROTECTION; WAVELET TRANSFORM; DISCRIMINATION; SCHEME; RESTRAINT;
D O I
10.1016/j.epsr.2017.01.029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel method based on higher-order statistics for discrimination between magnetizing inrush and internal fault in power transformers. The distribution characteristics of the sample points of differential currents, under various operation conditions, are firstly investigated and quantified using higher-order statistics. Based on these characteristics, three kurtosis-based indices are defined for distinguishing inrush current from internal fault current. The final discrimination criterion combines these three indices to improve the performance of inrush current identification. Extensive simulation studies and experimental tests verify the effectiveness of the proposed method and its advantages over the conventional second harmonic restraint method. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [11] Steganographic system based on higher-order statistics
    Tzschoppe, R
    Bäuml, R
    Huber, JB
    Kaup, A
    SECURITY AND WATERMARKING OF MULTIMEDIA CONTENTS V, 2003, 5020 : 156 - 166
  • [12] Face Recognition based on Higher-Order Statistics
    da Silva Neto, J. G.
    Caldeira, J. L. M.
    Ferreira, D. D.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (05) : 1508 - 1515
  • [13] Fast GRNN-Based Method for Distinguishing Inrush Currents in Power Transformers
    Afrasiabi, Shahabodin
    Afrasiabi, Mousa
    Parang, Benyamin
    Mohammadi, Mohammad
    Samet, Haidar
    Dragicevic, Tomislav
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (08) : 8501 - 8512
  • [14] Non-Intrusive Appliance Load Identification Based on Higher-Order Statistics
    Guedes, J. D. S.
    Ferreira, D. D.
    Barbosa, B. H. G.
    Duque, C. A.
    Cerqueira, A. S.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (10) : 3343 - 3349
  • [15] PREDICATE TRANSFORMERS AND HIGHER-ORDER PROGRAMS
    NAUMANN, DA
    THEORETICAL COMPUTER SCIENCE, 1995, 150 (01) : 111 - 159
  • [16] Higher-order statistics for κ-μ distribution
    Cotton, S. L.
    Scanlon, W. G.
    ELECTRONICS LETTERS, 2007, 43 (22) : 1215 - 1217
  • [17] APPLICATIONS OF HIGHER-ORDER STATISTICS
    MENDEL, JM
    NANDI, AK
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) : 341 - 342
  • [18] On identification of FIR multichannel models using higher-order statistics
    Tugnait, JK
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 813 - 817
  • [19] Identification of multivariate FIR systems using higher-order statistics
    Tong, L
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3037 - 3040
  • [20] Identification of multichannel MA parameters using higher-order statistics
    Tong, L
    SIGNAL PROCESSING, 1996, 53 (2-3) : 195 - 209