Repair of clustered DNA lesions - Sequence-specific inhibition of long-patch base excision repair by 8-oxoguanine

被引:42
作者
Budworth, H
Dianova, II
Podust, VN
Dianov, GL [1 ]
机构
[1] MRC, Radiat & Genome Stabil Unit, Harwell OX11 0RD, Oxon, England
[2] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37232 USA
[3] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
关键词
D O I
10.1074/jbc.M201918200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ionizing radiation induces clustered DNA damage where two or more lesions are located proximal to each other on the same or opposite DNA strands. It has been suggested that individual lesions within a cluster are removed sequentially and that the presence of a vicinal lesion(s) may affect the rate and fidelity of DNA repair. In this study, we addressed the question of how 8-oxoguanine located opposite to normal or reduced abasic sites would affect the repair of these sites by the base excision repair system. We have found that an 8-oxoguanine located opposite to an abasic site does not affect either the efficiency or fidelity of repair synthesis by DNA polymerase beta. In contrast, an 8-oxoguanine located one nucleotide 3'-downstream of the abasic site significantly reduces both strand displacement synthesis supported by DNA polymerase beta or delta and cleavage by flap endonuclease of the generated flap, thus inhibiting the long-patch base excision repair pathway.
引用
收藏
页码:21300 / 21305
页数:6
相关论文
共 37 条
[1]   DNA polymerase β:: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes [J].
Ahn, JW ;
Kraynov, VS ;
Zhong, XJ ;
Werneburg, BG ;
Tsai, MD .
BIOCHEMICAL JOURNAL, 1998, 331 :79-87
[2]   Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli [J].
Blaisdell, JO ;
Wallace, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (13) :7426-7430
[3]   Increased activity and fidelity of DNA polymerase beta on single-nucleotide gapped DNA [J].
Chagovetz, AM ;
Sweasy, JB ;
Preston, BD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27501-27504
[4]   Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonuclease III with bistranded abasic sites in DNA [J].
Chaudhry, MA ;
Weinfeld, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (25) :15650-15655
[5]   The complexity of radiation-induced DNA damage as revealed by exposure to cell extracts [J].
Cunniffe, S ;
O'Neill, P .
RADIATION RESEARCH, 1999, 152 (04) :421-427
[6]   Efficiency of excision of 8-oxo-guanine within DNA clustered damage by XRS5 nuclear extracts and purified human OGG1 protein [J].
David-Cordonnier, MH ;
Boiteux, S ;
O'Neill, P .
BIOCHEMISTRY, 2001, 40 (39) :11811-11818
[7]   Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein [J].
David-Cordonnier, MH ;
Boiteux, S ;
O'Neill, P .
NUCLEIC ACIDS RESEARCH, 2001, 29 (05) :1107-1113
[8]   Human RAD2 homolog 1 5'- to 3'-exo/endonuclease can efficiently excise a displaced DNA fragment containing a 5'-terminal abasic lesion by endonuclease activity [J].
DeMott, MS ;
Shen, BH ;
Park, MS ;
Bambara, RA ;
Zigman, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (47) :30068-30076
[9]   Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells [J].
Dianov, G ;
Bischoff, C ;
Sunesen, M ;
Bohr, VA .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1365-1368
[10]   GENERATION OF SINGLE-NUCLEOTIDE REPAIR PATCHES FOLLOWING EXCISION OF URACIL RESIDUES FROM DNA [J].
DIANOV, G ;
PRICE, A ;
LINDAHL, T .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (04) :1605-1612