Free monotone transport

被引:38
作者
Guionnet, A. [1 ,2 ,3 ]
Shlyakhtenko, D. [4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] CNRS, F-69342 Lyon 07, France
[3] Ecole Normale Super Lyon, F-69342 Lyon 07, France
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
INFORMATION MEASURE; MATRIX MODELS; ENTROPY; FACTORIALITY; ANALOGS;
D O I
10.1007/s00222-013-0493-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By solving a free analog of the Monge-AmpSre equation, we prove a non-commutative analog of Brenier's monotone transport theorem: if an n-tuple of self-adjoint non-commutative random variables Z (1),aEuro broken vertical bar,Z (n) satisfies a regularity condition (its conjugate variables xi (1),aEuro broken vertical bar,xi (n) should be analytic in Z (1),aEuro broken vertical bar,Z (n) and xi (j) should be close to Z (j) in a certain analytic norm), then there exist invertible non-commutative functions F (j) of an n-tuple of semicircular variables S (1),aEuro broken vertical bar,S (n) , so that Z (j) =F (j) (S (1),aEuro broken vertical bar,S (n) ). Moreover, F (j) can be chosen to be monotone, in the sense that and g is a non-commutative function with a positive definite Hessian. In particular, we can deduce that C (au)(Z (1),aEuro broken vertical bar,Z (n) )a parts per thousand...C (au)(S (1),aEuro broken vertical bar,S (n) ) and . Thus our condition is a useful way to recognize when an n-tuple of operators generate a free group factor. We obtain as a consequence that the q-deformed free group factors are isomorphic (for sufficiently small q, with bound depending on n) to free group factors. We also partially prove a conjecture of Voiculescu by showing that free Gibbs states which are small perturbations of a semicircle law generate free group factors. Lastly, we show that entrywise monotone transport maps for certain Gibbs measure on matrices are well-approximated by the matricial transport maps given by free monotone transport.
引用
收藏
页码:613 / 661
页数:49
相关论文
共 31 条
[1]  
Anderson G. W., 2010, An introduction to random matrices
[2]   Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems [J].
Biane, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (01) :232-286
[3]  
Biane P, 2001, GEOM FUNCT ANAL, V11, P1125
[4]   Asymptotic Expansion of β Matrix Models in the One-cut Regime [J].
Borot, G. ;
Guionnet, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (02) :447-483
[5]   AN EXAMPLE OF A GENERALIZED BROWNIAN-MOTION [J].
BOZEJKO, M ;
SPEICHER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (03) :519-531
[6]   q-Gaussian processes: Non-commutative and classical aspects [J].
Bozejko, M ;
Kummerer, B ;
Speicher, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) :129-154
[8]   Monotonicity properties of optimal transportation and the FKG and related inequalities [J].
Caffarelli, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) :547-563
[9]  
Guionnet A., 2006, PROC INT CONG MATH, V3, P623
[10]  
Guionnet A., 2006, Alea, V1, P241