LP solutions to the parameterized Fredholm integral equations associated with Chandrasekhar kernels

被引:0
作者
Feng, Sheng-Ya [1 ,2 ,3 ]
Chang, Der-Chen [4 ,5 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
[4] Georgetown Univ, Dept Math & Stat, Washington, DC USA
[5] Fu Jen Catholic Univ, Grad Inst Business Adm, Coll Management, New Taipei, Taiwan
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Chandrasekhar kernel; Hilbert-type inequality; Fredholm integral equation; fixed-point theorem; L-p solution;
D O I
10.1080/00036811.2020.1864342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the L-p solution of the Fredholm integral equation with parameters. On the one hand, we use Hilbert-type inequality to study Chandrasekhar-type integral operators, generalize the reachability results for the norm of the Chandrasekhar integral operator, and establish the existence and uniqueness results of the solutions of Chandrasekhar-type integral equations with parameters. On the other hand, we develop an iterative kernel technique for integral equations in infinite intervals, and construct series solutions of general Fredholm integral equations with parameters in different L-p spaces.
引用
收藏
页码:4650 / 4667
页数:18
相关论文
共 31 条
  • [1] [Anonymous], NUMER MATH
  • [2] ATKINSON K, 1973, NUMER MATH, V22, P17, DOI 10.1007/BF01436618
  • [3] Atkinson K. E., 1997, The Numerical Solution of Integral Equations of the Second Kind
  • [4] ATKINSON K.E., 1998, J INTEGRAL EQUATIONS, V10, P253, DOI DOI 10.1216/JIEA/1181074231
  • [5] SOLUTION OF NON-UNIQUE LINEAR INTEGRAL EQUATIONS
    ATKINSON, KE
    [J]. NUMERISCHE MATHEMATIK, 1967, 10 (02) : 117 - &
  • [6] A survey on the study of Hilbert-type inequalities
    Chen, Qiang
    Yang, Bicheng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [7] Cimmino G., CALCOLO APPROSSIMA 2, V1, P326
  • [8] Douglas JR J., 1960, S NUM TREATM ORD DIF, P269
  • [9] Existence, uniqueness, and approximation solutions to linearized Chandrasekhar equation with sharp bounds
    Feng, Sheng-Ya
    Chang, Der-Chen
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (02)
  • [10] Exact Bounds and Approximating Solutions to the Fredholm Integral Equations of Chandrasekhar Type
    Feng, Sheng-Ya
    Chang, Der-Chen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (02): : 409 - 425