Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification

被引:227
|
作者
Andreatta, Massimo [1 ]
Karosiene, Edita [2 ]
Rasmussen, Michael [3 ]
Stryhn, Anette [3 ]
Buus, Soren [3 ]
Nielsen, Morten [1 ,4 ]
机构
[1] Univ Nacl San Martin, Inst Invest Biotecnol, RA-1650 Buenos Aires, DF, Argentina
[2] La Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA 92037 USA
[3] Univ Copenhagen, Fac Hlth Sci, Expt Immunol Lab, DK-2200 Copenhagen, Denmark
[4] Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
基金
美国国家卫生研究院;
关键词
MHC class II; Peptide binding; T cell cross-reactivity; Binding core; Artificial neural networks; Peptide-MHC; T-CELL EPITOPES; HLA-DR; FLANKING RESIDUES; CROSS-REACTIVITY; MOLECULAR-BASIS; PROTEIN; TCR; RECOGNITION; SEQUENCE; GENERATION;
D O I
10.1007/s00251-015-0873-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 50 条
  • [1] Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification
    Massimo Andreatta
    Edita Karosiene
    Michael Rasmussen
    Anette Stryhn
    Søren Buus
    Morten Nielsen
    Immunogenetics, 2015, 67 : 641 - 650
  • [2] Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools
    Zhang, Lianming
    Udaka, Keiko
    Mamitsuka, Hiroshi
    Zhu, Shanfeng
    BRIEFINGS IN BIOINFORMATICS, 2012, 13 (03) : 350 - 364
  • [3] Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity
    Rasmussen, Michael
    Fenoy, Emilio
    Harndahl, Mikkel
    Kristensen, Anne Bregnballe
    Nielsen, Ida Kallehauge
    Nielsen, Morten
    Buus, Soren
    JOURNAL OF IMMUNOLOGY, 2016, 197 (04) : 1517 - 1524
  • [4] Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy
    Mattsson, A. H.
    Kringelum, J. V.
    Garde, C.
    Nielsen, M.
    HLA, 2016, 88 (06) : 287 - 292
  • [5] Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment
    Carrasco Pro, S.
    Zimic, M.
    Nielsen, M.
    TISSUE ANTIGENS, 2014, 83 (02): : 94 - 100
  • [6] Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods
    Zhang, Hao
    Lundegaard, Claus
    Nielsen, Morten
    BIOINFORMATICS, 2009, 25 (01) : 83 - 89
  • [7] Improved methods for predicting peptide binding affinity to MHC class II molecules
    Jensen, Kamilla Kjaergaard
    Andreatta, Massimo
    Marcatili, Paolo
    Buus, Soren
    Greenbaum, Jason A.
    Yan, Zhen
    Sette, Alessandro
    Peters, Bjoern
    Nielsen, Morten
    IMMUNOLOGY, 2018, 154 (03) : 394 - 406
  • [8] Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes
    Antunes, Dinler A.
    Abella, Jayvee R.
    Devaurs, Didier
    Rigo, Mauricio M.
    Kavraki, Lydia E.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (26) : 2239 - 2255
  • [9] Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data
    Garde, Christian
    Ramarathinam, Sri H.
    Jappe, Emma C.
    Nielsen, Morten
    Kringelum, Jens V.
    Trolle, Thomas
    Purcell, Anthony W.
    IMMUNOGENETICS, 2019, 71 (07) : 445 - 454
  • [10] A Review on the Methods of Peptide-MHC Binding Prediction
    Liu, Yang
    Ouyang, Xia-hui
    Xiao, Zhi-Xiong
    Zhang, Le
    Cao, Yang
    CURRENT BIOINFORMATICS, 2020, 15 (08) : 878 - 888