GLOBAL STABILITY AND BACKWARD BIFURCATION OF A GENERAL VIRAL INFECTION MODEL WITH VIRUS-DRIVEN PROLIFERATION OF TARGET CELLS

被引:4
作者
Shu, Hongying [1 ]
Wang, Lin [1 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2014年 / 19卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
Virus dynamics; in-host model; global stability; backward bifurcation; DYNAMICS IN-VIVO; HIV-INFECTION; INTRACELLULAR DELAY; MATHEMATICAL-ANALYSIS; THERAPY; SYSTEMS;
D O I
10.3934/dcdsb.2014.19.1749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a general viral model with virus-driven proliferation of target cells is studied. Global stability results are established by employing the Lyapunov method and a geometric approach developed by Li and Muldowney. It is shown that under certain conditions, the model exhibits a global threshold dynamics, while if these conditions are not met, then backward bifurcation and bistability are possible. An example is presented to provide some insights on how the virus-driven proliferation of target cells influences the virus dynamics and the drug therapy strategies.
引用
收藏
页码:1749 / 1768
页数:20
相关论文
共 36 条
[1]  
[Anonymous], 1996, Not AMS, DOI DOI 10.1006/TPBI.1998.1382
[2]  
[Anonymous], 2000, VIRUS DYNAMICS
[3]  
Bhatia N. P, 1967, Lecture Notes in Mathematics, V1, P113
[4]   PERSISTENCE IN DYNAMIC-SYSTEMS [J].
BUTLER, G ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :255-263
[5]  
Coppel W, 1995, Stability and Asymptotic Behavior of Differential Equations
[6]   Target cell limited and immune control models of HIV infection: A comparison [J].
De Boer, RJ ;
Perelson, AS .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 190 (03) :201-214
[7]   Virus dynamics: A global analysis [J].
De Leenheer, P ;
Smith, HL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (04) :1313-1327
[8]   Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay [J].
Dixit, NM ;
Perelson, AS .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 226 (01) :95-109
[9]  
Freedman HI., 1994, J DYN DIFFER EQU, V6, P583, DOI [10.1007/BF02218848, DOI 10.1007/BF02218848]
[10]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]