Tailoring interactions of carbon and sulfur in Li-S battery cathodes: significant effects of carbon-heteroatom bonds

被引:77
作者
Li, Xia [1 ]
Li, Xifei [1 ]
Banis, Mohammad N. [1 ]
Wang, Biqiong [1 ,2 ]
Lushington, Andrew [1 ]
Cui, Xiaoyu [3 ]
Li, Ruying [1 ]
Sham, Tsun-Kong [2 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
[3] Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HEAT-TREATMENT AFFECT; HIGH-ENERGY DENSITY; NONNOBLE ELECTROCATALYSTS; O-2; REDUCTION; LITHIUM; GRAPHENE; CAPACITY; RAMAN; ELECTROLYTE; CHALLENGES;
D O I
10.1039/c4ta02007c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, effects of carbon-heteroatom bonds on sulfur cathodes were investigated. A series of carbon black substrates were prepared using various treatments to introduce nitrogen or oxygen surface species. Our results indicated that nitrogen-doped carbon black significantly improved the electrochemical performance of sulfur cathode materials. Synchrotron-based XPS revealed that the defect sites of nitrogen-doped carbon are favorable for the discharge product deposition, leading to a high utilization and reversibility of sulfur cathodes. Our studies also found that the introduction of oxygen functional groups results in deteriorated performance of Li-sulfur batteries due to the reduced conductivity and unwanted side reactions occurring between sulfur and surface oxygen species.
引用
收藏
页码:12866 / 12872
页数:7
相关论文
共 42 条
[1]   Evidence of lithium-nitrogen interaction in chitosan-based films from X-ray photoelectron spectroscopy [J].
Arof, AK ;
Morni, NM ;
Yarmo, MA .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 55 (1-2) :130-133
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
CHEMICAL COMMUNICATIONS, 2013, 49 (90) :10545-10562
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]  
Changming F., 1991, Solid State Ionics, V48, P289
[6]   3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries [J].
Chen, Shuangqiang ;
Huang, Xiaodan ;
Liu, Hao ;
Sun, Bing ;
Yeoh, Waikong ;
Li, Kefei ;
Zhang, Jinqiang ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2014, 4 (08)
[7]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[8]   Shuttle phenomenon - The irreversible oxidation mechanism of sulfur active material in Li-S battery [J].
Diao, Yan ;
Xie, Kai ;
Xiong, Shizhao ;
Hong, Xiaobin .
JOURNAL OF POWER SOURCES, 2013, 235 :181-186
[9]   USE OF RAMAN-SCATTERING TO INVESTIGATE DISORDER AND CRYSTALLITE FORMATION IN AS-DEPOSITED AND ANNEALED CARBON-FILMS [J].
DILLON, RO ;
WOOLLAM, JA ;
KATKANANT, V .
PHYSICAL REVIEW B, 1984, 29 (06) :3482-3489
[10]   Binding Mechanism and Electrochemical Properties of M13 Phage-Sulfur Composite [J].
Dong, Dexian ;
Zhang, Yongguang ;
Sutaria, Sanjana ;
Konarov, Aishuak ;
Chen, Pu .
PLOS ONE, 2013, 8 (11)