Brain-Inspired Navigation Model Based on the Distribution of Polarized Sky-Light

被引:3
作者
Li, Jinshan [1 ,2 ]
Chu, Jinkui [1 ,2 ]
Zhang, Ran [1 ,2 ]
Tong, Kun [1 ,2 ]
机构
[1] Dalian Univ Technol, Key Lab Precis & Nontradit Machining Technol, Minist Educ, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Micro Nano Technol & Syst Liaoning Prov, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
polarization sensor; bionic inspired navigation; visual SLAM; grid cell; HEAD-DIRECTION CELLS; SPATIAL MAP; PLACE CELLS; ALGORITHM; COMPASS; FIELDS;
D O I
10.3390/machines10111028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a brain-inspired navigation model based on absolute heading for the autonomous navigation of unmanned platforms. The proposed model combined the sand ant's strategy of acquiring absolute heading from the sky environment and the brain-inspired navigation system, which is closer to the navigation mechanism of migratory animals. Firstly, a brain-inspired grid cell network model and an absolute heading-based head-direction cell network model were constructed based on the continuous attractor network (CAN). Then, an absolute heading-based environmental vision template was constructed using the line scan intensity distribution curve, and the path integration error was corrected using the environmental vision template. Finally, a topological cognitive node was constructed according to the grid cell, the head direction cell, the environmental visual template, the absolute heading information, and the position information. Numerous topological nodes formed the absolute heading-based topological map. The model is a topological navigation method not limited to strict geometric space scale, and its position and absolute heading are decoupled. The experimental results showed that the proposed model is superior to the other methods in terms of the accuracy of visual template recognition, as well as the accuracy and topology consistency of the constructed environment topology map.
引用
收藏
页数:22
相关论文
empty
未找到相关数据