Structure from Motion and Photometric Stereo for Dense 3D Shape Recovery
被引:0
作者:
Sabzevari, Reza
论文数: 0引用数: 0
h-index: 0
机构:
Ist Italiano Tecnol, I-16163 Genoa, ItalyIst Italiano Tecnol, I-16163 Genoa, Italy
Sabzevari, Reza
[1
]
Del Bue, Alessio
论文数: 0引用数: 0
h-index: 0
机构:
Ist Italiano Tecnol, I-16163 Genoa, ItalyIst Italiano Tecnol, I-16163 Genoa, Italy
Del Bue, Alessio
[1
]
Murino, Vittorio
论文数: 0引用数: 0
h-index: 0
机构:
Ist Italiano Tecnol, I-16163 Genoa, ItalyIst Italiano Tecnol, I-16163 Genoa, Italy
Murino, Vittorio
[1
]
机构:
[1] Ist Italiano Tecnol, I-16163 Genoa, Italy
来源:
IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I
|
2011年
/
6978卷
关键词:
Structure from Motion;
Photometric Stereo;
Dense 3D Reconstruction;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
In this paper we present a dense 3D reconstruction pipeline from monocular video sequences using jointly Photometric Stereo (PS) and Structure from Motion (SfM) approaches. The input videos are completely uncalibrated both from the multi-view geometry and photometric stereo aspects. In particular we make use of the 3D metric information computed with SfM from a set of 2D landmarks in order to solve for the bas-relief ambiguity which is intrinsic from dense PS surface estimation. The algorithm is evaluated over the CMU Multi-Pie database which contains the images of 337 subjects viewed under different lighting conditions and showing various facial expressions.