On Wiener numbers of polygonal nets

被引:11
|
作者
Shiu, WC
Lam, PCB
Poon, KK
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Inst Educ, Dept Math, Tai Po, Hong Kong, Peoples R China
关键词
graph; distance; polygonal net; Wiener number;
D O I
10.1016/S0166-218X(01)00317-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener number of a connected graph is equal to the sum of distances between all pairs of its vertices. In this paper, we shall generalize the elementary cuts method to homogeneous n-gonal nets and give a formula to calculate the Wiener numbers of irregular convex triangular hexagons. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [21] A Diophantine equation about polygonal numbers
    Li, Yangcheng
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (03) : 113 - 118
  • [22] A generalization of the Fermat theorem on polygonal numbers
    Griffiths, LW
    ANNALS OF MATHEMATICS, 1930, 31 : 1 - 12
  • [23] Sums of four polygonal numbers with coefficients
    Meng, Xiang-Zi
    Sun, Zhi-Wei
    ACTA ARITHMETICA, 2017, 180 (03) : 229 - 249
  • [24] Extremal Polygonal Cacti for Wiener Index and Kirchhoff Index
    Zeng, Mingyao
    Xiao, Qiqi
    Tang, Zikai
    Deng, Hanyuan
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (03): : 201 - 211
  • [25] The expected values of Wiener indices in random polygonal chains
    Wang, Hong-yong
    Deng, Hanyuan
    Jiang, Qin
    ARS COMBINATORIA, 2016, 125 : 151 - 160
  • [26] Fermat's polygonal number theorem for repeated generalized polygonal numbers
    Banerjee, Soumyarup
    Batavia, Manav
    Kane, Ben
    Kyranbay, Muratzhan
    Park, Dayoon
    Saha, Sagnik
    So, Hiu Chun
    Varyani, Piyush
    JOURNAL OF NUMBER THEORY, 2021, 220 : 163 - 181
  • [27] Multiplicative functions additive on polygonal numbers
    Byungchan Kim
    Ji Young Kim
    Chong Gyu Lee
    Poo-Sung Park
    Aequationes mathematicae, 2021, 95 : 601 - 621
  • [28] Universal functions of polygonal numbers, II
    Griffiths, LW
    AMERICAN JOURNAL OF MATHEMATICS, 1944, 66 : 97 - 100
  • [29] Polygonal radix representations of complex numbers
    Safer, T
    THEORETICAL COMPUTER SCIENCE, 1999, 210 (01) : 159 - 171
  • [30] MAGIC NUMBERS IN POLYGONAL AND POLYHEDRAL CLUSTERS
    TEO, BK
    SLOANE, NJA
    INORGANIC CHEMISTRY, 1985, 24 (26) : 4545 - 4558