On Wiener numbers of polygonal nets

被引:11
|
作者
Shiu, WC
Lam, PCB
Poon, KK
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Inst Educ, Dept Math, Tai Po, Hong Kong, Peoples R China
关键词
graph; distance; polygonal net; Wiener number;
D O I
10.1016/S0166-218X(01)00317-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener number of a connected graph is equal to the sum of distances between all pairs of its vertices. In this paper, we shall generalize the elementary cuts method to homogeneous n-gonal nets and give a formula to calculate the Wiener numbers of irregular convex triangular hexagons. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [11] On polygonal fuzzy sets and numbers
    Baez-Sanchez, A. D.
    Moretti, A. C.
    Rojas-Medar, M. A.
    FUZZY SETS AND SYSTEMS, 2012, 209 : 54 - 65
  • [12] On universal sums of polygonal numbers
    SUN Zhi-Wei
    Science China(Mathematics), 2015, 58 (07) : 1367 - 1396
  • [13] On universal sums of polygonal numbers
    Zhi-Wei Sun
    Science China Mathematics, 2015, 58 : 1367 - 1396
  • [14] ON SUMS OF THREE POLYGONAL NUMBERS
    Canadas, Agusin Moreno
    Angarita, Maria Alejandra Osorio
    Avila, William German Salas
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 34 (01): : 65 - 81
  • [15] Enumeration of Wiener indices in random polygonal chains
    Wei, Shouliu
    Shiu, Wai Chee
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 537 - 548
  • [16] On universal sums of polygonal numbers
    Sun Zhi-Wei
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1367 - 1396
  • [17] Polygonal, Sierpinski and Riesel numbers
    Baezkowski, Daniel
    Eimer, Justin
    Finchi, Carrie E.
    Suminski, Braedon
    Kozek, Mark
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (08)
  • [18] The symmetric polygonal fuzzy numbers
    Liu, PY
    Li, HX
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 88 - 91
  • [19] Wiener and hyper-Wiener numbers in a single matrix
    Diudea, MV
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1996, 36 (04): : 833 - 836
  • [20] ON SOME POLYGONAL NUMBERS WHICH ARE, AT THE SAME TIME, THE SUMS, DIFFERENCES, AND PRODUCTS OF 2 OTHER POLYGONAL NUMBERS
    HIROSE, S
    FIBONACCI QUARTERLY, 1986, 24 (02): : 99 - 106