On Wiener numbers of polygonal nets

被引:11
|
作者
Shiu, WC
Lam, PCB
Poon, KK
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Inst Educ, Dept Math, Tai Po, Hong Kong, Peoples R China
关键词
graph; distance; polygonal net; Wiener number;
D O I
10.1016/S0166-218X(01)00317-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener number of a connected graph is equal to the sum of distances between all pairs of its vertices. In this paper, we shall generalize the elementary cuts method to homogeneous n-gonal nets and give a formula to calculate the Wiener numbers of irregular convex triangular hexagons. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [1] Extremal Even Polygonal Chains on Wiener Numbers
    Cao, Yuefen
    Yang, Weiling
    Zhang, Fuji
    POLYCYCLIC AROMATIC COMPOUNDS, 2020, 40 (05) : 1616 - 1623
  • [2] Representation by extended polygonal numbers and by generalized polygonal numbers
    Griffiths, LW
    AMERICAN JOURNAL OF MATHEMATICS, 1933, 55 : 102 - 110
  • [3] Polygonal Numbers
    Grabowski, Adam
    FORMALIZED MATHEMATICS, 2013, 21 (02): : 103 - 113
  • [4] Wiener and Hyper-Wiener Indices of Polygonal Cylinder and Torus
    Peng, Zhi-Ba
    Nizami, Abdul Rauf
    Iqbal, Zaffar
    Munir, Muhammad Mobeen
    Ahmed, Hafiz Muhammad Waqar
    Liu, Jia-Bao
    COMPLEXITY, 2021, 2021
  • [5] On Sums of Practical Numbers and Polygonal Numbers
    Somu, Sai Teja
    Tran, Duc Van Khanh
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (05) : 1 - 12
  • [6] POLYGONAL PRODUCTS OF POLYGONAL NUMBERS AND THE PELL EQUATION
    EGGAN, LC
    EGGAN, PC
    SELFRIDGE, JL
    FIBONACCI QUARTERLY, 1982, 20 (01): : 24 - 28
  • [7] A NOTE ON THE POLYGONAL NUMBERS
    ANDO, S
    FIBONACCI QUARTERLY, 1981, 19 (02): : 180 - 183
  • [8] Wiener and Hyper-Wiener Indices of Polygonal Cylinder and Torus
    Peng, Zhi-Ba
    Nizami, Abdul Rauf
    Iqbal, Zaffar
    Munir, Muhammad Mobeen
    Waqar Ahmed, Hafiz Muhammad
    Liu, Jia-Bao
    Complexity, 2021, 2021
  • [9] ON THE MODELING OF WIENER NUMBERS
    POLANSKY, OE
    MATH/CHEM/COMP 1988, 1989, 63 : 167 - 184
  • [10] Pythagorean triples of polygonal numbers
    Scheffold, E
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (03): : 257 - 258