The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars (Brassica napus L.)

被引:18
|
作者
Ton, Linh Bao [1 ]
Neik, Ting Xiang [2 ]
Batley, Jacqueline [1 ]
机构
[1] Univ Western Australia, Sch Biol Sci, Perth, WA 6009, Australia
[2] Sunway Coll Kuala Lumpur, 2 Jalan Univ, Bandar Sunway 47500, Selangor, Malaysia
基金
澳大利亚研究理事会;
关键词
canola; Brassica napus; genetics; gene technology; genomics; disease resistance; POLYUNSATURATED FATTY-ACIDS; GENOME-WIDE SURVEY; SCLEROTINIA-SCLEROTIORUM; PLASMODIOPHORA-BRASSICAE; RESISTANCE; CLUBROOT; CANOLA; CROP; IDENTIFICATION; ARCHITECTURE;
D O I
10.3390/genes11101161
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [41] INTERACTION OF PSEUDOMONAS FLUORESCENCE BACTERIA AND PHOSPHORUS ON THE QUANTITATIVE AND THE QUALITATIVE YIELD OF RAPESEED (BRASSICA NAPUS L.) CULTIVARS
    Arabi, Safari M.
    Lak, S. H.
    Modhej, A.
    Ramzanpour, M. R.
    Mobasser, H. R.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (01): : 63 - 80
  • [42] Thin layer drying characteristics of rapeseed (Brassica napus L.)
    Le Anh Duc
    Han, Jae Woong
    Keum, Dong Hyuk
    JOURNAL OF STORED PRODUCTS RESEARCH, 2011, 47 (01) : 32 - 38
  • [43] Potential of genomic selection in rapeseed (Brassica napus L.) breeding
    Wuerschum, Tobias
    Abel, Stefan
    Zhao, Yusheng
    PLANT BREEDING, 2014, 133 (01) : 45 - 51
  • [44] Metabolically engineered male sterility in rapeseed (Brassica napus L.)
    Thomas Engelke
    J. Hirsche
    T. Roitsch
    Theoretical and Applied Genetics, 2011, 122 : 163 - 174
  • [45] Fixed-bed pyrolysis of rapeseed (Brassica napus L.)
    Onay, O
    Koçkar, OM
    BIOMASS & BIOENERGY, 2004, 26 (03): : 289 - 299
  • [46] EFFECTS OF PLANTING DATE ON SPRING RAPESEED (Brassica napus L.) CULTIVARS UNDER DIFFERENT IRRIGATION REGIMES
    Shirani Rad, Amir Hossein
    Bitarafan, Zahra
    Rahmani, Fazel
    Taherkhani, Tofigh
    Moradi Aghdam, Amin
    Nasresfahani, Sharareh
    TURKISH JOURNAL OF FIELD CROPS, 2014, 19 (02) : 153 - 157
  • [47] Foaming properties of acylated rapeseed (Brassica napus L.) hydrolysates
    Sánchez-Vioque, R
    Bagger, CL
    Rabiller, C
    Guéguen, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 244 (02) : 386 - 393
  • [48] Metabolically engineered male sterility in rapeseed (Brassica napus L.)
    Engelke, Thomas
    Hirsche, J.
    Roitsch, T.
    THEORETICAL AND APPLIED GENETICS, 2011, 122 (01) : 163 - 174
  • [49] Emulsifying properties of acylated rapeseed (Brassica napus L.) peptides
    Sánchez-Vioque, R
    Bagger, CL
    Larré, C
    Guéguen, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 271 (01) : 220 - 226
  • [50] Productivity of wheat (Triticum aestivum L.) intercropped with rapeseed (Brassica napus L.)
    Ebrahimi, E.
    Kaul, H. -P.
    Neugschwandtner, R. W.
    Nassab, A. Dabbagh Mohammadi
    CANADIAN JOURNAL OF PLANT SCIENCE, 2017, 97 (04) : 557 - 568