Fidelity benchmarks for two-qubit gates in silicon

被引:298
作者
Huang, W. [1 ]
Yang, C. H. [1 ]
Chan, K. W. [1 ]
Tanttu, T. [1 ]
Hensen, B. [1 ]
Leon, R. C. C. [1 ]
Fogarty, M. A. [1 ,2 ]
Hwang, J. C. C. [1 ]
Hudson, F. E. [1 ]
Itoh, K. M. [3 ]
Morello, A. [1 ]
Laucht, A. [1 ]
Dzurak, A. S. [1 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Ctr Quantum Computat & Commun Technol, Sydney, NSW, Australia
[2] UCL, London Ctr Nanotechnol, London, England
[3] Keio Univ, Sch Fundamental Sci & Technol, Yokohama, Kanagawa, Japan
基金
澳大利亚研究理事会;
关键词
SINGLE-ELECTRON SPIN; QUANTUM; QUBIT; RESONANCE; NOISE;
D O I
10.1038/s41586-019-1197-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Universal quantum computation will require qubit technology based on a scalable platform(1), together with quantum error correction protocols that place strict limits on the maximum infidelities for one-and two-qubit gate operations(2,3). Although various qubit systems have shown high fidelities at the one-qubit level(4-10), the only solid-state qubits manufactured using standard lithographic techniques that have demonstrated two-qubit fidelities near the fault-tolerance threshold(6) have been in superconductor systems. Silicon-based quantum dot qubits are also amenable to large-scale fabrication and can achieve high single-qubit gate fidelities (exceeding 99.9 per cent) using isotopically enriched silicon(11,12). Two-qubit gates have now been demonstrated in a number of systems(13-15), but as yet an accurate assessment of their fidelities using Clifford-based randomized benchmarking, which uses sequences of randomly chosen gates to measure the error, has not been achieved. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80 to 89 per cent, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7 per cent and an average controlled-rotation fidelity of 98 per cent. These fidelities are found to be limited by the relatively long gate times used here compared with the decoherence times of the qubits. Silicon qubit designs employing fast gate operations with high Rabi frequencies(16,17), together with advanced pulsing techniques(18), should therefore enable much higher fidelities in the near future.
引用
收藏
页码:532 / +
页数:10
相关论文
共 39 条
[1]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[2]   Electrically driven electron spin resonance mediated by spin-valley-orbit coupling in a silicon quantum dot [J].
Corna, Andrea ;
Bourdet, Leo ;
Maurand, Romain ;
Crippa, Alessandro ;
Kotekar-Patil, Dharmraj ;
Bohuslavskyi, Heorhii ;
Lavieville, Romain ;
Hutin, Louis ;
Barraud, Sylvain ;
Jehl, Xavier ;
Vinet, Maud ;
De Franceschi, Silvano ;
Niquet, Yann-Michel ;
Sanquer, Marc .
NPJ QUANTUM INFORMATION, 2018, 4
[3]   Nanoscale broadband transmission lines for spin qubit control [J].
Dehollain, J. P. ;
Pla, J. J. ;
Siew, E. ;
Tan, K. Y. ;
Dzurak, A. S. ;
Morello, A. .
NANOTECHNOLOGY, 2013, 24 (01)
[4]   Quantum Dephasing in a Gated GaAs Triple Quantum Dot due to Nonergodic Noise [J].
Delbecq, M. R. ;
Nakajima, T. ;
Stano, P. ;
Otsuka, T. ;
Amaha, S. ;
Yoneda, J. ;
Takeda, K. ;
Allison, G. ;
Ludwig, A. ;
Wieck, A. D. ;
Tarucha, S. .
PHYSICAL REVIEW LETTERS, 2016, 116 (04)
[5]  
Elzerman JM, 2004, NATURE, V430, P431, DOI [10.1038/nature02693, 10.1039/nature02693]
[6]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[7]   Electric-dipole-induced spin resonance in quantum dots [J].
Golovach, Vitaly N. ;
Borhani, Massoud ;
Loss, Daniel .
PHYSICAL REVIEW B, 2006, 74 (16)
[8]   Quantum computing with trapped ions [J].
Haffner, H. ;
Roos, C. F. ;
Blatt, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (04) :155-203
[9]   Electrically driven spin qubit based on valley mixing [J].
Huang, Wister ;
Veldhorst, Menno ;
Zimmerman, Neil M. ;
Dzurak, Andrew S. ;
Culcer, Dimitrie .
PHYSICAL REVIEW B, 2017, 95 (07)
[10]   Isotope engineering of silicon and diamond for quantum computing and sensing applications [J].
Itoh, Kohei M. ;
Watanabe, Hideyuki .
MRS COMMUNICATIONS, 2014, 4 (04) :143-157