ON HOMOTOPY CATEGORIES OF GORENSTEIN MODULES: COMPACT GENERATION AND DIMENSIONS

被引:1
作者
Gao, Nan [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Gorenstein projective module; Gorenstein flat module; compactly generated homotopy category; Gorenstein representation dimension; TRIANGULATED CATEGORIES; TATE COHOMOLOGY; LOCALIZATION; COMPLEXES; ADJOINTS; THEOREM;
D O I
10.4310/HHA.2015.v17.n2.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a virtually Gorenstein algebra of finite CM-type. We establish a duality between the subcategory of compact objects in the homotopy category of Gorenstein projective left A-modules and the bounded Gorenstein derived category of finitely generated right A-modules. Let R be a two-sided noetherian ring such that the subcategory of Gorenstein flat modules R-GF is closed under direct products. We show that the inclusion K(R-GF) -> K(R-Mod) of homotopy categories admits a right adjoint. We introduce the notion of Gorenstein representation dimension for an algebra of finite CM-type, and give a lower bound by the dimension of its bounded Gorenstein derived category.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 39 条
  • [1] [Anonymous], 1977, Lecture Notes in Math.
  • [2] [Anonymous], MAXIMAL COHEN UNPUB
  • [3] Auslander M., 1971, QUEEN MARY COLL MATH
  • [4] Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
  • [5] Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension
    Avramov, LL
    Martsinkovsky, A
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 : 393 - 440
  • [6] Idempotent completion of triangulated categories
    Balmer, P
    Schlichting, M
    [J]. JOURNAL OF ALGEBRA, 2001, 236 (02) : 819 - 834
  • [7] On the abelianization of derived categories and a negative solution to Rosicky's problem
    Bazzoni, Silvana
    Stovicek, Jan
    [J]. COMPOSITIO MATHEMATICA, 2013, 149 (01) : 125 - 147
  • [8] Beligiannis A, 2007, MEM AM MATH SOC, V188, P1
  • [9] On algebras of finite Cohen-Macaulay type
    Beligiannis, Apostolos
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1973 - 2019
  • [10] Dimensions of triangulated categories via Koszul objects
    Bergh, Petter Andreas
    Iyengar, Srikanth B.
    Krause, Henning
    Oppermann, Steffen
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) : 849 - 864