Evaluation of Deep Convolutional Neural Network architectures for Emotion Recognition in the Wild

被引:0
作者
Talipu, A. [1 ]
Generosi, A. [1 ]
Mengoni, M. [1 ]
Giraldi, L. [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
[2] Emoj Srl, Ancona, Italy
来源
2019 IEEE 23RD INTERNATIONAL SYMPOSIUM ON CONSUMER TECHNOLOGIES (ISCT) | 2019年
关键词
deep learning; emotion recognition; convolutional neural network;
D O I
10.1109/isce.2019.8900994
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a software based on an innovative Convolutional Neural Network model to recognize the six Ekman's universal emotions from the photos of human faces captured in the wild. The CNN was trained using three different datasets already labeled and merged after making them homogeneous. A comparison among different types of CNN architectures using the Keras framework for Python language is proposed and the evaluation results are presented.
引用
收藏
页码:25 / 27
页数:3
相关论文
共 11 条
[1]  
Altieri A., 2019, 2019 IEEE INT C CONS
[2]  
[Anonymous], 2017, EmotioNet Challenge: Recognition of facial expressions of emotion in the wild
[3]  
Barsoum E., 2016, TRAINING DEEP NETWOR
[4]   Tool to make shopping experience responsive to customer emotions [J].
Ceccacci, Silvia ;
Generosi, Andrea ;
Giraldi, Luca ;
Mengoni, Maura .
International Journal of Automation Technology, 2018, 12 (03) :319-326
[5]  
Ekman P., 1978, Palo Alto, DOI https://doi.org/10.1037/t27734-000
[6]  
Generosi A, 2019, I SYMP CONSUM ELECTR
[7]  
Generosi A, 2018, IEEE I C CONS ELECT
[8]  
Li S., 2018, DIABETOLOGIA, P1
[9]  
Lucey P., 2010, 2010 IEEE COMP SOC C, P94
[10]  
Simonyan K., 2015, AM J HLTH SYSTEM PHA