Rational maps with generalized Sierpinski gasket Julia sets

被引:17
作者
Devaney, Robert L.
Rocha, Monica Moreno [1 ]
Siegmund, Stefan
机构
[1] Univ Toronto, Fields Inst, Toronto, ON M5T 3J1, Canada
[2] Boston Univ, Dept Math, Boston, MA 02215 USA
[3] Goethe Univ Frankfurt, Dept Math, D-60325 Frankfurt, Germany
关键词
rational maps; Julia sets; Sierpinski gaskets;
D O I
10.1016/j.topol.2006.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a family of rational maps acting on the Riemann sphere with a single preperiodic critical orbit. Using a generalization of the well-known Sierpinski gasket, we provide a complete topological description of their Julia sets. In addition, we present a combinatorial algorithm that allows us to show when two such Julia sets are not topologically equivalent. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 8 条
[1]   Sierpinski-curve Julia sets and singular perturbations of complex polynomials [J].
Blanchard, P ;
Devaney, RL ;
Look, DM ;
Seal, P ;
Shapiro, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1047-1055
[2]   The escape trichotomy for singularly perturbed rational maps [J].
Devaney, RL ;
Look, DM ;
Uminsky, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1621-1634
[3]  
DEVANEY RL, IN PRESS TOPOLOGY P
[4]   Julia sets of postcritically finite rational maps and topological self-similar sets [J].
Kameyama, A .
NONLINEARITY, 2000, 13 (01) :165-188
[5]  
Kuratowski K., 1968, TOPOLOGY, VII
[6]   Hausdorff dimension of subsets of the parameter space for families of rational maps. (A generalization of Shishikura's result) [J].
Lei, T .
NONLINEARITY, 1998, 11 (02) :233-246
[7]  
Mane R., 1993, Bol. Soc. Brasil. Mat. (N.S.), V24, P1, DOI DOI 10.1007/BF01231694
[8]  
MILNOR J, 1999, DYNAMICS 1 COMPLEX V