Catalytic Growth of Graphitic Carbon-Coated Silicon as High-Performance Anodes for Lithium Storage

被引:6
作者
Shi, Minyuan [1 ]
Nie, Ping [1 ]
Fu, Ruirui [1 ]
Fang, Shan [1 ]
Li, Zihan [1 ]
Dou, Hui [1 ]
Zhang, Xiaogang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Jiangsu Key Lab Electrochem Energy Storage Techno, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
high graphitic carbon layer; lithium-ion batteries; MgO catalytic; silicon anodes; POROUS SILICON; MAGNESIOTHERMIC-REDUCTION; BATTERY ANODES; ION; GRAPHENE; COMPOSITE; ELECTRODE; PARTICLES; NANOTUBE; NETWORK;
D O I
10.1002/ente.201900502
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Although silicon is considered as one of the most promising anode materials in next-generation lithium-ion batteries, large volumetric expansion during cycling hampers its practical application. The fabrication of silicon/carbon composites is an effective way to improve electrical conductivity and inhibit electroactive material delaminating from the current collector. Herein, a graphitic carbon-coated porous silicon nanospheres (p-SiNSs@C) composite is prepared through a chemical vapor deposition (CVD) technique by using the magnesiothermic reduction by-product MgO as a template and catalyst. With the template of in situ generation of MgO, the p-SiNSs@C material is obtained in a very short time. Due to the graphitic carbon shell and porous structure inside the silicon nanospheres, the obtained p-SiNSs@C, with 8 min carbon growing time (p-SiNSs@C-2), deliver a high initial reversible capacity of 2220 mAh g(-1) at 0.1 A g(-1) and respectable rate capability. Furthermore, the p-SiNSs@C-2//LiCoO2 Li-ion full cell displays a high energy density of approximate to 409 Wh kg(-1) and good cycling performance. The high performance of the p-SiNSs@C-2 composite can be attributed to the synergistic effect of nanoscale-sized Si, porous structure, and stable carbon shell.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Carbon-Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy-Density Li-Ion Battery [J].
Agyeman, Daniel Adjei ;
Song, Kyeongse ;
Lee, Gi-Hyeok ;
Park, Mihui ;
Kang, Yong-Mook .
ADVANCED ENERGY MATERIALS, 2016, 6 (20)
[2]   A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes [J].
Bao, Wurigumula ;
Wang, Jing ;
Chen, Shi ;
Li, Weikang ;
Su, Yuefeng ;
Wu, Feng ;
Tan, Guoqiang ;
Lu, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (47) :24667-24676
[3]   Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution [J].
Chen, Shichuan ;
Kang, Zhixiong ;
Hu, Xin ;
Zhang, Xiaodong ;
Wang, Hui ;
Xie, Junfeng ;
Zheng, XuSheng ;
Yan, Wensheng ;
Pan, Bicai ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[4]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[5]   Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries [J].
Cui, Min ;
Wang, Lin ;
Guo, Xianwei ;
Wang, Errui ;
Yang, Yubo ;
Wu, Tianhao ;
He, Di ;
Liu, Shiqi ;
Yu, Haijun .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3874-3881
[6]   Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability [J].
Du, Fei-Hu ;
Li, Bo ;
Fu, Wei ;
Xiong, Yi-Jun ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
ADVANCED MATERIALS, 2014, 26 (35) :6145-6150
[7]   A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond [J].
Entwistle, Jake ;
Rennie, Anthony ;
Patwardhan, Siddharth .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (38) :18344-18356
[8]   Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications [J].
Feng, Kun ;
Li, Matthew ;
Liu, Wenwen ;
Kashkooli, Ali Ghorbani ;
Xiao, Xingcheng ;
Cai, Mei ;
Chen, Zhongwei .
SMALL, 2018, 14 (08)
[9]   Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes [J].
Feng, Kun ;
Ahn, Wook ;
Lui, Gregory ;
Park, Hey Woong ;
Kashkooli, Ali Ghorbani ;
Jiang, Gaopeng ;
Wang, Xiaolei ;
Xiao, Xingcheng ;
Chen, Zhongwei .
NANO ENERGY, 2016, 19 :187-197
[10]   Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries [J].
Fu, Rusheng ;
Zhang, Keli ;
Zaccaria, Remo Proietti ;
Huang, Heran ;
Xia, Yonggao ;
Liu, Zhaoping .
NANO ENERGY, 2017, 39 :546-553