Imprint of Pressure on Characteristic Dark Matter Profiles: The Case of ESO0140040

被引:6
作者
Boshkayev, Kuantay [1 ,2 ,3 ,4 ]
Konysbayev, Talgar [1 ,4 ,5 ]
Kurmanov, Ergali [5 ]
Luongo, Orlando [1 ,2 ,6 ]
Muccino, Marco [1 ,2 ,7 ]
机构
[1] Al Farabi Kazakh Natl Univ, Natl Nanotechnol Lab Open Type NNLOT, Al Farabi Av 71, Alma Ata 050040, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Dept Theoret & Nucl Phys, Al Farabi Ave 71, Alma Ata 050040, Kazakhstan
[3] Nazarbayev Univ, Dept Phys, Kabanbay Batyr 53, Nur Sultan 010000, Kazakhstan
[4] Fesenkov Astrophys Inst, Observ 23, Alma Ata 050020, Kazakhstan
[5] Al Farabi Kazakh Natl Univ, Dept Solid State Phys & Nonlinear Phys, Al Farabi Ave 71, Alma Ata 050040, Kazakhstan
[6] Univ Camerino, Scuola Sci & Tecnol, I-62032 Camerino, Italy
[7] Ist Nazl Fis Nucl INFN, Lab Nazl Frascati, I-00044 Frascati, Italy
关键词
dark matter; rotational curves; equation of state; perturbations; optical properties; EQUATION-OF-STATE; ROTATION CURVES; GALAXIES; EVOLUTION; HALOS;
D O I
10.3390/galaxies8040074
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the dark matter distribution in the spiral galaxy ESO0140040, employing the most widely used density profiles: the pseudo-isothermal, exponential sphere, Burkert, Navarro-Frenk-White, Moore and Einasto profiles. We infer the model parameters and estimate the total dark matter content from the rotation curve data. For simplicity, we assume that dark matter distribution is spherically symmetric without accounting for the complex structure of the galaxy. Our predictions are compared with previous results and the fitted parameters are statistically confronted for each profile. We thus show that although one does not include the galaxy structure it is possible to account for the same dynamics assuming that dark matter provides a non-zero pressure in the Newtonian approximation. In this respect, we solve the hydrostatic equilibrium equation and construct the dark matter pressure as a function for each profile. Consequently, we discuss the dark matter equation of state and calculate the speed of sound in dark matter. Furthermore, we interpret our results in view of our approach and we discuss the role of the refractive index as an observational signature to discriminate between our approach and the standard one.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 46 条
[1]   The Rotation Curve, Mass Distribution, and Dark Matter Content of the Milky Way from Classical Cepheids [J].
Ablimit, Iminhaji ;
Zhao, Gang ;
Flynn, Chris ;
Bird, Sarah A. .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 895 (01)
[2]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   Cosmography and constraints on the equation of state of the Universe in various parametrizations [J].
Aviles, Alejandro ;
Gruber, Christine ;
Luongo, Orlando ;
Quevedo, Hernando .
PHYSICAL REVIEW D, 2012, 86 (12)
[5]   Dark matter equation of state from rotational curves of galaxies [J].
Barranco, J. ;
Bernal, A. ;
Nunez, D. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 449 (01) :403-413
[6]   Particle dark matter: evidence, candidates and constraints [J].
Bertone, G ;
Hooper, D ;
Silk, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 405 (5-6) :279-390
[7]   Evolution of the cluster mass function:: Gpc3 dark matter simulations [J].
Bode, P ;
Bahcall, NA ;
Ford, EB ;
Ostriker, JP .
ASTROPHYSICAL JOURNAL, 2001, 551 (01) :15-22
[8]   INVESTIGATION OF DIFFERENT DARK MATTER PROFILES [J].
Boshkayev, K. ;
Zhumakhanova, G. ;
Mutalipova, K. ;
Muccino, M. .
NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2019, 6 (328) :25-33
[9]   THE STRUCTURE OF DARK-MATTER HALOS IN DWARF GALAXIES [J].
BURKERT, A .
ASTROPHYSICAL JOURNAL, 1995, 447 (01) :L25-L28
[10]   Does Chaplygin gas have salvation? [J].
Campos, Juliano P. ;
Fabris, Julio C. ;
Perez, Rafael ;
Piattella, Oliver F. ;
Velten, Hermano .
EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (04) :1-15