Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat Discrimination

被引:26
作者
Tarantino, Cristina [1 ]
Forte, Luigi [2 ,3 ]
Blonda, Palma [1 ]
Vicario, Saverio [1 ]
Tomaselli, Valeria [2 ]
Beierkuhnlein, Carl [4 ,5 ,6 ]
Adamo, Maria [1 ]
机构
[1] CNR, Natl Res Council Italy, Inst Atmospher Pollut Res, IIA,Interateneo Phys Dept, I-70126 Bari, Italy
[2] Univ Bari, Dept Biol, Via Orabona 4, I-70125 Bari, Italy
[3] Univ Bari, Bot Garden Museum, I-70125 Bari, Italy
[4] Univ Bayreuth, Dept Biogeog, D-95440 Bayreuth, Germany
[5] Univ Bayreuth, Bayreuth Ctr Ecol & Environm Res, BayCEER, D-95440 Bayreuth, Germany
[6] Univ Bayreuth, GIB, Geog Inst Bayreuth, D-95440 Bayreuth, Germany
基金
欧盟地平线“2020”;
关键词
grassland; habitat mapping; Natura; 2000; Sentinel-2; spectral index; time-series; USE CLASSIFICATIONS; EXPERT KNOWLEDGE; SPECTRAL INDEXES; VECTOR MACHINES; VEGETATION; PLANT; BIODIVERSITY; CONSERVATION; COMMUNITY; LANDSAT;
D O I
10.3390/rs13020277
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present study aims to discriminate four semi-arid grassland habitats in a Mediterranean Natura 2000 site, Southern Italy, involving 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-E1.C2-E1.C4 (according to Annex I of the European Habitat Directive/EUropean Nature Information System (EUNIS) taxonomies). For this purpose, an intra-annual time-series of 30 Sentinel-2 images, embedding phenology information, were investigated for 2018. The methodology adopted was based on a two-stage workflow employing a Support Vector Machine classifier. In the first stage only four Sentinel-2 multi-season images were analyzed, to provide an updated land cover map from where the grassland layer was extracted. The layer obtained was then used for masking the input features to the second stage. The latter stage discriminated the four grassland habitats by analyzing several input features configurations. These included multiple spectral indices selected from the time-series and the Digital Terrain Model. The results obtained from the different input configurations selected were compared to evaluate if the phenology information from time-series could improve grassland habitats discrimination. The highest F1 values (95.25% and 80.27%) were achieved for 6210/E1.263 and 6220/E1.434, respectively, whereas the results remained stable (97,33%) for 62A0/E1.55 and quite low (75,97%) for X/E1.61-E1.C2-E1.C4. However, since for all the four habitats analyzed no single configuration resulted effective, a Majority Vote algorithm was applied to achieve a reduction in classification uncertainty.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 96 条
  • [1] Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy
    Adamo, Maria
    Tomaselli, Valeria
    Tarantino, Cristina
    Vicario, Saverio
    Veronico, Giuseppe
    Lucas, Richard
    Blonda, Palma
    [J]. REMOTE SENSING, 2020, 12 (09)
  • [2] Habitat mapping of coastal wetlands using expert knowledge and Earth observation data
    Adamo, Maria
    Tarantino, Cristina
    Tomaselli, Valeria
    Veronico, Giuseppe
    Nagendra, Harini
    Blonda, Palma
    [J]. JOURNAL OF APPLIED ECOLOGY, 2016, 53 (05) : 1521 - 1532
  • [3] Expert knowledge for translating land cover/use maps to General Habitat Categories (GHC)
    Adamo, Maria
    Tarantino, Cristina
    Tomaselli, Valeria
    Kosmidou, Vasiliki
    Petrou, Zisis
    Manakos, Ioannis
    Lucas, Richard M.
    Mucher, Caspar A.
    Veronico, Giuseppe
    Marangi, Carmela
    De Pasquale, Vito
    Blonda, Palma
    [J]. LANDSCAPE ECOLOGY, 2014, 29 (06) : 1045 - 1067
  • [4] A biogeophysical approach for automated SWIR unmixing of soils and vegetation
    Asner, GP
    Lobell, DB
    [J]. REMOTE SENSING OF ENVIRONMENT, 2000, 74 (01) : 99 - 112
  • [5] Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas
    Barati, Susan
    Rayegani, Behzad
    Saati, Mehdi
    Sharifi, Alireza
    Nasri, Masoud
    [J]. EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2011, 14 (01) : 49 - 56
  • [6] An updated checklist of the vascular flora native to Italy
    Bartolucci, F.
    Peruzzi, L.
    Galasso, G.
    Albano, A.
    Alessandrini, A.
    Ardenghi, N. M. G.
    Astuti, G.
    Bacchetta, G.
    Ballelli, S.
    Banfi, E.
    Barberis, G.
    Bernardo, L.
    Bouvet, D.
    Bovio, M.
    Cecchi, L.
    Di Pietro, R.
    Domina, G.
    Fascetti, S.
    Fenu, G.
    Festi, F.
    Foggi, B.
    Gallo, L.
    Gottschlich, G.
    Gubellini, L.
    Iamonico, D.
    Iberite, M.
    Jimenez-Mejias, P.
    Lattanzi, E.
    Marchetti, D.
    Martinetto, E.
    Masin, R. R.
    Medagli, P.
    Passalacqua, N. G.
    Peccenini, S.
    Pennesi, R.
    Pierini, B.
    Poldini, L.
    Prosser, F.
    Raimondo, F. M.
    Roma-Marzio, F.
    Rosati, L.
    Santangelo, A.
    Scoppola, A.
    Scortegagna, S.
    Selvaggi, A.
    Selvi, F.
    Soldano, A.
    Stinca, A.
    Wagensommer, R. P.
    Wilhalm, T.
    [J]. PLANT BIOSYSTEMS, 2018, 152 (02): : 179 - 303
  • [7] Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia
    Baumann, Matthias
    Ozdogan, Mutlu
    Kuemmerle, Tobias
    Wendland, Kelly J.
    Esipova, Elena
    Radeloff, Volker C.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 124 : 174 - 184
  • [8] Biondi E., 2012, Plant Sociology, V49, P5, DOI 10.7338/pls2012491/01
  • [9] Biondi E., Prodromo Della Vegetazione d'Italia
  • [10] Braun-Blanquet J., 1964, PFLANZENSOZIOLOGIE G, P287