Single walled carbon nanotube quantification method employing the Raman signal intensity

被引:38
作者
Anoshkin, Ilya V. [1 ,2 ]
Nefedova, Irina I. [2 ]
Lioubtchenko, Dmitri V. [1 ,2 ]
Nefedov, Igor S. [2 ,3 ]
Raisanen, Antti V. [2 ]
机构
[1] KTH Royal Inst Technol Micro & Nanosyst, Sch Elect Engn, Stockholm, Sweden
[2] Aalto Univ, Sch Elect Engn, Dept Radio Sci & Engn, Aalto, Finland
[3] ITMO Univ, Lab Nanooptomechan, St Petersburg, Russia
基金
芬兰科学院;
关键词
Carbon nanotubes; Raman spectroscopy; SPECTROSCOPY; SCATTERING; FILMS;
D O I
10.1016/j.carbon.2017.02.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new technique for measuring the number of single walled carbon nanotubes (SWCNTs) and their concentration in a carbon nanotube layer is developed in this work. It is based on the G peak intensity of the Raman spectrum, together with precise mass and optical absorbance measurements. The dependence of the number of the carbon nanotubes on the phonon scattering intensity is observed. This method opens an opportunity for the quantitative mapping of sp(2) carbon atom distribution in the SWCNT layers with a resolution limited by the focused laser spot size. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:547 / 552
页数:6
相关论文
共 25 条
[1]   Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method [J].
Anoshkin, Ilya V. ;
Nasibulin, Albert G. ;
Tian, Ying ;
Liu, Bilu ;
Jiang, Hua ;
Kauppinen, Esko I. .
CARBON, 2014, 78 :130-136
[2]   Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes [J].
Borghei, Maryam ;
Scotti, Gianmario ;
Kanninen, Petri ;
Weckman, Timo ;
Anoshkin, Ilya V. ;
Nasibulin, Albert G. ;
Franssila, Sami ;
Kauppinen, Esko I. ;
Kallio, Tanja ;
Ruiz, Virginia .
ENERGY, 2014, 65 :612-620
[3]   Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes [J].
Dragoman, D ;
Dragoman, M .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 24 (3-4) :282-289
[4]   The big picture of Raman scattering in carbon nanotubes [J].
Dresselhaus, M. S. ;
Dresselhaus, G. ;
Hofmann, M. .
VIBRATIONAL SPECTROSCOPY, 2007, 45 (02) :71-81
[5]   Defect characterization in graphene and carbon nanotubes using Raman spectroscopy [J].
Dresselhaus, M. S. ;
Jorio, A. ;
Souza Filho, A. G. ;
Saito, R. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1932) :5355-5377
[6]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[7]   Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects [J].
Fantini, C ;
Jorio, A ;
Souza, M ;
Strano, MS ;
Dresselhaus, MS ;
Pimenta, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :147406-1
[8]   Carbon nanotube network varactor [J].
Generalov, A. A. ;
Anoshkin, I. V. ;
Erdmanis, M. ;
Lioubtchenko, D. V. ;
Ovchinnikov, V. ;
Nasibulin, A. G. ;
Raisanen, A. V. .
NANOTECHNOLOGY, 2015, 26 (04)
[9]   Carbon Nanotube Thin Films: Fabrication, Properties, and Applications [J].
Hu, Liangbing ;
Hecht, David S. ;
Gruener, George .
CHEMICAL REVIEWS, 2010, 110 (10) :5790-5844
[10]   Optical absorption spectroscopy for determining carbon nanotube concentration in solution [J].
Jeong, Seok Ho ;
Kim, Ki Kang ;
Jeong, Seok Jin ;
An, Kay Hyeok ;
Lee, Seung Hee ;
Lee, Young Hee .
SYNTHETIC METALS, 2007, 157 (13-15) :570-574