Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography

被引:49
作者
Lan, Gongpu [1 ,2 ,3 ]
Li, Guoqiang [1 ,2 ,3 ]
机构
[1] Ohio State Univ, Visual & Biomed Opt Lab, Columbus, OH 43212 USA
[2] Ohio State Univ, Dept Ophthalmol & Visual Sci, Columbus, OH 43212 USA
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43212 USA
基金
美国国家卫生研究院;
关键词
RESOLUTION;
D O I
10.1038/srep42353
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonlinear sampling of the interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional spectral domain optical coherence tomography (SD-OCT). Here we report a linear-in-wavenumber (k-space) spectrometer for an ultra-broad bandwidth (760 nm-920 nm) SD-OCT, whereby a combination of a grating and a prism serves as the dispersion group. Quantitative ray tracing is applied to optimize the linearity and minimize the optical path differences for the dispersed wavenumbers. Zemax simulation is used to fit the point spread functions to the rectangular shape of the pixels of the line-scan camera and to improve the pixel sampling rates. An experimental SD-OCT is built to test and compare the performance of the k-space spectrometer with that of a conventional one. Design results demonstrate that this k-space spectrometer can reduce the nonlinearity error in k-space from 14.86% to 0.47% (by approximately 30 times) compared to the conventional spectrometer. The 95% confidence interval for RMS diameters is 5.48 +/- 1.76 mu msignificantly smaller than both the pixel size (14 mu m x 28 mu m) and the Airy disc (25.82 mu m in diameter, calculated at the wavenumber of 7.548 mu m(-1)). Test results demonstrate that the fall-off curve from the k-space spectrometer exhibits much less decay (maximum as -5.20 dB) than the conventional spectrometer (maximum as - 16.84 dB) over the whole imaging depth (2.2 mm).
引用
收藏
页数:8
相关论文
共 15 条
[1]   High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth [J].
An, Lin ;
Li, Peng ;
Lan, Gongpu ;
Malchow, Doug ;
Wang, Ruikang K. .
BIOMEDICAL OPTICS EXPRESS, 2013, 4 (02) :245-259
[2]   In vivo cellular optical coherence tomography imaging [J].
Boppart, SA ;
Bouma, BE ;
Pitris, C ;
Southern, JF ;
Brezinski, ME ;
Fujimoto, JG .
NATURE MEDICINE, 1998, 4 (07) :861-865
[3]   Spectral resolution and sampling issues in Fourier-transform spectral interferometry [J].
Dorrer, C ;
Belabas, N ;
Likforman, JP ;
Joffre, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (10) :1795-1802
[4]  
Drexler W, 2008, BIOL MED PHYS BIOMED, P1, DOI 10.1007/978-3-540-77550-8
[5]   MEASUREMENT OF INTRAOCULAR DISTANCES BY BACKSCATTERING SPECTRAL INTERFEROMETRY [J].
FERCHER, AF ;
HITZENBERGER, CK ;
KAMP, G ;
ELZAIAT, SY .
OPTICS COMMUNICATIONS, 1995, 117 (1-2) :43-48
[6]   Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography [J].
Gelikonov, V. M. ;
Gelikonov, G. V. ;
Shilyagin, P. A. .
OPTICS AND SPECTROSCOPY, 2009, 106 (03) :459-465
[7]  
Häusler G, 1998, J BIOMED OPT, V3, P21, DOI 10.1117/1.429899
[8]   Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer [J].
Hu, Zhilin ;
Rollins, Andrew M. .
OPTICS LETTERS, 2007, 32 (24) :3525-3527
[9]   Analytical model of spectrometer-based two-beam spectral interferometry [J].
Hu, Zhilin ;
Pan, Yinsheng ;
Rollins, Andrew M. .
APPLIED OPTICS, 2007, 46 (35) :8499-8505
[10]  
Izatt JA, 2008, BIOL MED PHYS BIOMED, P47, DOI 10.1007/978-3-540-77550-8_2