Esterification of levulinic acid with ethanol over sulfated Si-doped ZrO2 solid acid catalyst: Study of the structure-activity relationships

被引:115
作者
Kuwahara, Yasutaka [1 ]
Kaburagi, Wako [1 ]
Nemoto, Koji [2 ]
Fujitani, Tadahiro [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Innovat Sustainable Chem, Tsukuba, Ibaraki 3058565, Japan
[2] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem, Tsukuba, Ibaraki 3058565, Japan
关键词
Biomass conversion; Levulinic acid; Esterification; Solid acid catalyst; Sulfated zirconia; GAMMA-VALEROLACTONE; ETHYL LEVULINATE; BIOMASS; CONVERSION; ZIRCONIA; TRANSFORMATION; BIODIESEL; ESTERS; FUELS;
D O I
10.1016/j.apcata.2014.02.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Esterification of levulinic acid with ethanol to produce ethyl levulinate was examined by using sulfated Sidoped ZrO2 solid acid catalysts with enlarged surface areas and the relationships between the structural properties and catalytic performances were investigated. Structures of the catalysts were verified by XRD, nitrogen physisorption, FE-SEM, UV-vis and FTIR measurements. Acidity of the catalysts that substantially affect the catalytic activity was evaluated by NH3-TPD measurement. Incorporation of Si atom into the lattice structure of ZrO2 (up to 30 mol% Si per Zr atom) afforded high-surface-area SiO2-ZrO2 mixed oxides, and their sulfated forms provided increased numbers of sulfate anions and the associated acid sites. Several distinct correlations were found between the structural properties/acidities and catalytic activities, which suggested that (i) the number of accessible active acid sites and (ii) the accessibility of the organic reactants to the active sites play crucial roles in determining the overall activity. Among the catalysts tested, sulfated Si-doped ZrO2 with optimum Si content (5.0-10 mol% Si per Zr) was found to be the best catalyst, the activity of which was far superior to that of the conventional sulfated ZrO2. In addition, direct conversion of cellulosic sugars (glucose and fructose) into levulinate esters was also examined, in view of their practical applications in acid-catalyzed biomass conversion processes. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:186 / 196
页数:11
相关论文
共 48 条
[1]   Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2013, 15 (03) :584-595
[2]   γ-Valerolactone Ring-Opening and Decarboxylation over SiO2/Al2O3 in the Presence of Water [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
West, Ryan M. ;
Dumesic, James A. .
LANGMUIR, 2010, 26 (21) :16291-16298
[3]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[4]   Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited [J].
Bozell, Joseph J. ;
Petersen, Gene R. .
GREEN CHEMISTRY, 2010, 12 (04) :539-554
[5]   Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid [J].
Braden, Drew J. ;
Henao, Carlos A. ;
Heltzel, Jacob ;
Maravelias, Christos T. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2011, 13 (07) :1755-1765
[6]   Catalytic transformations of biomass-derived acids into advanced biofuels [J].
Carlos Serrano-Ruiz, Juan ;
Pineda, Antonio ;
Mariana Balu, Alina ;
Luque, Rafael ;
Manuel Campelo, Juan ;
Angel Romero, Antonio ;
Manuel Ramos-Fernandez, Jose .
CATALYSIS TODAY, 2012, 195 (01) :162-168
[7]   Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica [J].
Chen, CL ;
Li, T ;
Cheng, SF ;
Lin, HP ;
Bhongale, CJ ;
Mou, CY .
MICROPOROUS AND MESOPOROUS MATERIALS, 2001, 50 (2-3) :201-208
[8]   Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification [J].
Chen, Xiao-Rong ;
Ju, Yi-Hsu ;
Mou, Chung-Yuan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (50) :18731-18737
[9]   Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J].
Chheda, Juben N. ;
Huber, George W. ;
Dumesic, James A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7164-7183
[10]  
Climent M.J., 2014, GREEN CHEM