Entire solutions of quasilinear elliptic equations

被引:21
作者
Serrin, James [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Elliptic differential equations; Entire solutions; Liouville theorems;
D O I
10.1016/j.jmaa.2008.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study entire solutions of non-homogeneous quasilinear elliptic equations, with Eqs. (1) and (2) below being typical. A particular special case of interest is the following: Let a be an entire distribution solution of the equation Delta(p)u = vertical bar u vertical bar(q-1)u, where p > 1. If q > p - 1 then u equivalent to 0. On the otherhand, if 0 < q < p - 1 and u(x) = o(vertical bar x vertical bar(p/(p-q-1))) as vertical bar x vertical bar -> infinity, then again u equivalent to 0. If q = p - 1 then u equivalent to 0 for all solutions with at most algebraic growth at infinity. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 10 条
[1]   NONEXISTENCE RESULTS FOR SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
BENGURIA, RD ;
LORCA, S ;
YARUR, CS .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (03) :615-634
[2]   A PRIORI MAJORATION RELATING TO NON-PARAMETRICAL MINIMAL HYPERSURFACES [J].
BOMBIERI, E ;
DEGIORGI, E ;
MIRANDA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 32 (04) :255-&
[3]   SEMILINEAR EQUATIONS IN RN WITHOUT CONDITION AT INFINITY [J].
BREZIS, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (03) :271-282
[4]  
Farina A, 2007, HBK DIFF EQUAT STATI, V4, P61, DOI 10.1016/S1874-5733(07)80005-2
[5]  
Mitidieri E., 2001, Tr Mat Inst Steklova, V234, P1
[6]  
Pucci P, 2007, PROG NONLINEAR DIFFE, V73, P1
[7]  
Redheffer RM., 1960, J MATH ANAL APPL, V1, P277, DOI DOI 10.1016/0022-247X(60)90002-0
[8]  
SERRIN J, 1972, P LOND MATH SOC, V24, P348
[9]  
TKACHEV VG, 1994, J MATH SCI, V72, P3250
[10]   REGULARITY FOR A MORE GENERAL-CLASS OF QUASILINEAR ELLIPTIC-EQUATIONS [J].
TOLKSDORF, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (01) :126-150