Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4

被引:40
作者
Guo, Donglei [1 ]
Chang, Zhaorong [1 ]
Tang, Hongwei [1 ]
Li, Bao [1 ]
Xu, Xinhong [1 ]
Yuan, Xiao-Zi [2 ]
Wang, Haijiang [2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Key Lab Green Chem Media & React,Minist Educ, Collaborat Innovat Ctr Henan Prov Green Mfg Fine, Xinxiang 453007, Henan, Peoples R China
[2] Natl Res Council Canada, Vancouver, BC V6T 1W5, Canada
关键词
Lithium ion batteries; Lithium manganese oxide; Beta-hydroxy-manganese; Solid sphere; High tap-density; CATHODE MATERIALS; THIN-FILMS; LITHIUM; OXIDE; POWER; CAPABILITY; STABILITY; NANORODS;
D O I
10.1016/j.electacta.2014.01.030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid sphere spinel LiMn2O4 materials are synthesized from porous spherical Mn3O4 particles with LiOH center dot H2O via a high temperature solid-phase reaction. Porous spherical Mn3O4 particles, composed of aggregated crystallites, can be obtained from as-prepared spherical beta-MnOOH. The solid sphere spine! LiMn2O4 particles have a high tap-density of 2.67 g.cm(-3) and are well-distributed with sizes ranging from 7-9 mu m. The as-prepared beta-MnOOH, Mn3O4 and LiMn2O4 are characterized by X-ray diffraction and scanning electron microscopy. As cathode materials, solid sphere spinel LiMn2O4, exhibits excellent cycling performance and rate capability for lithium-ion batteries. The initial discharge capacities are 127.1, 118.1, 106.3 and 87 mAh.g(-1) at 0.2, 1,5 and 10 C, respectively. At 5 C the discharge capacity retention rate can be maintained at 95% after 200 cycles. Cyclic voltammetry and electrochemical impedance spectroscopy confirm the excellent electrochemical performances of the synthesized solid sphere spinel LiMn2O4 materials. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 259
页数:6
相关论文
共 39 条
[21]   Influence of sulphur substitution on structural and electrical properties of lithium-manganese spinels [J].
Molenda, M. ;
Dziembaj, R. ;
Podstawka, E. ;
Lasocha, W. ;
Proniewicz, L. M. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (5-6) :1347-1350
[22]   In situ X-ray diffraction studies of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge-discharge cycling [J].
Nam, Kyung-Wan ;
Yoon, Won-Sub ;
Shin, Hyunjung ;
Chung, Kyung Yoon ;
Choi, Seungdon ;
Yang, Xiao-Qing .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :652-659
[23]   THEORY AND APPLICATION OF CYCLIC VOLTAMMETRY FOR MEASUREMENT OF ELECTRODE REACTION KINETICS [J].
NICHOLSON, RS .
ANALYTICAL CHEMISTRY, 1965, 37 (11) :1351-+
[24]   (Li, Al)-co-doped spinel, Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries [J].
Prabu, M. ;
Reddy, M. V. ;
Selvasekarapandian, S. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
ELECTROCHIMICA ACTA, 2013, 88 :745-755
[25]   Surface modification of LiMn2O4 thin films at elevated temperature [J].
Shu, D ;
Kumar, G ;
Kim, KB ;
Ryu, KS ;
Chang, SH .
SOLID STATE IONICS, 2003, 160 (3-4) :227-233
[26]   Synthesis of Mg-doped LiMn2O4 powders for lithium-ion batteries by rotary heating [J].
Song, GM ;
Li, WJ ;
Zhou, Y .
MATERIALS CHEMISTRY AND PHYSICS, 2004, 87 (01) :162-167
[27]   Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries [J].
Tang, W. ;
Wang, X. J. ;
Hou, Y. Y. ;
Li, L. L. ;
Sun, H. ;
Zhu, Y. S. ;
Bai, Y. ;
Wu, Y. P. ;
Zhu, K. ;
van Ree, T. .
JOURNAL OF POWER SOURCES, 2012, 198 :308-311
[28]   Synthesis of spherical spinel LiMn2O4 with commercial manganese carbonate [J].
Wan, Chuanyun ;
Cheng, Min ;
Wu, Di .
POWDER TECHNOLOGY, 2011, 210 (01) :47-51
[29]   Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors [J].
Wan, Chuanyun ;
Wu, Mingcang ;
Wu, Di .
POWDER TECHNOLOGY, 2010, 199 (02) :154-158
[30]   Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries [J].
Wang, J. L. ;
Li, Z. H. ;
Yang, J. ;
Tang, J. J. ;
Yu, J. J. ;
Nie, W. B. ;
Lei, G. T. ;
Xiao, Q. Z. .
ELECTROCHIMICA ACTA, 2012, 75 :115-122