Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4

被引:40
作者
Guo, Donglei [1 ]
Chang, Zhaorong [1 ]
Tang, Hongwei [1 ]
Li, Bao [1 ]
Xu, Xinhong [1 ]
Yuan, Xiao-Zi [2 ]
Wang, Haijiang [2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Key Lab Green Chem Media & React,Minist Educ, Collaborat Innovat Ctr Henan Prov Green Mfg Fine, Xinxiang 453007, Henan, Peoples R China
[2] Natl Res Council Canada, Vancouver, BC V6T 1W5, Canada
关键词
Lithium ion batteries; Lithium manganese oxide; Beta-hydroxy-manganese; Solid sphere; High tap-density; CATHODE MATERIALS; THIN-FILMS; LITHIUM; OXIDE; POWER; CAPABILITY; STABILITY; NANORODS;
D O I
10.1016/j.electacta.2014.01.030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid sphere spinel LiMn2O4 materials are synthesized from porous spherical Mn3O4 particles with LiOH center dot H2O via a high temperature solid-phase reaction. Porous spherical Mn3O4 particles, composed of aggregated crystallites, can be obtained from as-prepared spherical beta-MnOOH. The solid sphere spine! LiMn2O4 particles have a high tap-density of 2.67 g.cm(-3) and are well-distributed with sizes ranging from 7-9 mu m. The as-prepared beta-MnOOH, Mn3O4 and LiMn2O4 are characterized by X-ray diffraction and scanning electron microscopy. As cathode materials, solid sphere spinel LiMn2O4, exhibits excellent cycling performance and rate capability for lithium-ion batteries. The initial discharge capacities are 127.1, 118.1, 106.3 and 87 mAh.g(-1) at 0.2, 1,5 and 10 C, respectively. At 5 C the discharge capacity retention rate can be maintained at 95% after 200 cycles. Cyclic voltammetry and electrochemical impedance spectroscopy confirm the excellent electrochemical performances of the synthesized solid sphere spinel LiMn2O4 materials. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 259
页数:6
相关论文
共 39 条
[1]   The elevated temperature performance of the LiMn2O4/C system:: failure and solutions [J].
Amatucci, G ;
Du Pasquier, A ;
Blyr, A ;
Zheng, T ;
Tarascon, JM .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :255-271
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   New surface modified material for LiMn2O4 cathode material in Li-ion battery [J].
Chan, HW ;
Duh, JG ;
Sheen, SR ;
Tsai, SY ;
Lee, CR .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (5-6) :1330-1334
[5]   Rotating ring-disk electrode measurements on Mn dissolution and capacity losses of spinel electrodes in various organic electrolytes [J].
Chen, Jenn-Shing ;
Wang, Li-Fang ;
Fang, Bor-Jian ;
Lee, Shao-Yung ;
Guo, Ren-Zheng .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :515-521
[6]   Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries [J].
Chen, Quanqi ;
Wang, Yaobin ;
Zhang, Tingting ;
Yin, Wumei ;
Yang, Jianwen ;
Wang, Xianyou .
ELECTROCHIMICA ACTA, 2012, 83 :65-72
[7]   Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries [J].
Chen, Yingchao ;
Xie, Kai ;
Pan, Yi ;
Zheng, Chunman .
JOURNAL OF POWER SOURCES, 2011, 196 (15) :6493-6497
[8]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[9]   Electrochemical characteristic of LiMn1.925M0.075O4 (M = Cr, Co) cathode materials synthesized by the microwave-induced combustion method [J].
Fu, Yen-Pei ;
Lin, Cheng-Hsiung ;
Su, Yu-Hsiu ;
Wu, She-Huang .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :215-218
[10]   Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J].
Gao, Fei ;
Tang, Zhiyuan .
ELECTROCHIMICA ACTA, 2008, 53 (15) :5071-5075