Finite size effects for the Ising model on random graphs with varying dilution

被引:7
作者
Barre, Julien [1 ]
Ciani, Antonia [2 ,3 ,6 ]
Fanelli, Duccio [4 ,5 ,6 ]
Bagnoli, Franco [4 ,5 ,6 ]
Ruffo, Stefano [4 ,5 ,6 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR 6621, Lab JA Dieudonne, F-06108 Nice, France
[2] Univ Florence, Dipartimento Fis, I-50019 Florence, Italy
[3] Ist Nazl Fis Nucl, I-50019 Florence, Italy
[4] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy
[5] Ist Nazl Fis Nucl, I-50139 Florence, Italy
[6] Univ Florence, CSDC, Centro Interdipartimentale Studio Dinamiche Compl, I-50019 Florence, Italy
关键词
Ising model; Random graphs; Finite size effects; Replica method; Cavity method;
D O I
10.1016/j.physa.2009.04.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the finite size corrections to the equilibrium magnetization of an Ising model on a random graph with N nodes and N gamma edges, with 1 < gamma <= 2. By conveniently rescaling the coupling constant, the free energy is made extensive. As expected, the system displays a phase transition of the mean-field type for all the considered values of gamma at the transition temperature of the fully connected Curie-Weiss model. Finite size corrections are investigated for different values of the parameter gamma, using two different approaches: a replica based finite N expansion, and a cavity method. Numerical simulations are compared with theoretical predictions. The cavity based analysis is shown to agree better with numerics. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3413 / 3425
页数:13
相关论文
共 18 条
[11]  
DEMBO A, 2008, ARXIV 08044726
[12]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[13]   Ising model on networks with an arbitrary distribution of connections [J].
Dorogovtsev, SN ;
Goltsev, AV ;
Mendes, JFF .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016104
[14]  
Erdos P., 1959, Publ. Math. Debrecen, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12
[15]  
Hartmann AK, 2005, PHASE TRANSITIONS IN COMBINATORIAL OPTIMIZATION PROBLEMS: BASICS, ALGORITHMS AND STATISTICAL MECHANICS, P1, DOI 10.1002/3527606734
[16]   Ferromagnetic ordering in graphs with arbitrary degree distribution [J].
Leone, M ;
Vázquez, A ;
Vespignani, A ;
Zecchina, R .
EUROPEAN PHYSICAL JOURNAL B, 2002, 28 (02) :191-197
[17]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[18]   The Bethe lattice spin glass revisited [J].
Mézard, M ;
Parisi, G .
EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02) :217-233