The annular decay property and capacity estimates for thin annuli

被引:10
作者
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
Lehrback, Juha [2 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
基金
芬兰科学院; 瑞典研究理事会;
关键词
Annular decay property; Capacity; Doubling measure; Metric space; Newtonian space; Poincare inequality; Sobolev space; Thin annulus; Upper gradient; Variational capacity; Weighted R-n; SPACES; INEQUALITIES;
D O I
10.1007/s13348-016-0178-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar, inequality. In particular, if the measure has the 1-annular decay property at and the metric space supports a pointwise 1-Poincar, inequality at , then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at . This generalizes the known estimate for the usual variational capacity in unweighted . We also characterize the 1-annular decay property and provide examples which illustrate the sharpness of our results.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 18 条
[1]  
[Anonymous], EMS TRACTS MATH
[2]  
[Anonymous], 1985, Weighted Norm Inequalities and Related Topics
[3]  
Bjorn A., 2013, ARXIV13121668
[4]   The Variational Capacity with Respect to Nonopen Sets in Metric Spaces [J].
Bjorn, Anders ;
Bjorn, Jana .
POTENTIAL ANALYSIS, 2014, 40 (01) :57-80
[5]  
Björn J, 2001, ANN ACAD SCI FENN-M, V26, P175
[6]  
Buckley SM, 1999, ANN ACAD SCI FENN-M, V24, P519
[7]  
Colding TH, 1998, COMMUN PUR APPL MATH, V51, P113, DOI 10.1002/(SICI)1097-0312(199802)51:2<113::AID-CPA1>3.0.CO
[8]  
2-E
[9]  
David G., 1985, REV MAT IBEROAM, V1, P1, DOI 10.4171/RMI/17
[10]  
Hajasz P, 2003, CONT MATH, V338, P173