Turbulence-driven zonal flows in helical systems with radial electric fields

被引:32
作者
Sugama, H. [1 ]
Watanabe, T. -H.
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
关键词
electric field effects; plasma kinetic theory; plasma toroidal confinement; plasma turbulence; rotational flow; TEMPERATURE-GRADIENT TURBULENCE; PLASMA; WAVES;
D O I
10.1063/1.3077274
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Collisionless long-time responses of the zonal-flow potential to the initial condition and turbulence source in helical systems having radial electric fields are derived theoretically. All classes of particles in passing, toroidally trapped, and helical-ripple-trapped states are considered. The transitions between the toroidally trapped and helical-ripple-trapped states are taken into account while solving the gyrokinetic equation analytically by taking its average along the particle orbits. When the radial displacements of helical-ripple-trapped particles are reduced either by neoclassical optimization of the helical geometry lowering the radial drift or by strengthening the radial electric field E-r to boost the poloidal rotation, enhanced zonal-flow responses are obtained. Under the identical conditions on the magnitude of E-r and the magnetic geometry, using ions with a heavier mass gives rise to a higher zonal-flow response, and therefore the turbulent transport is expected to show a more favorable ion-mass dependence than the conventional gyro-Bohm scaling.
引用
收藏
页数:10
相关论文
共 31 条
[1]   The role of plasma elongation on the linear damping of zonal flows [J].
Angelino, P. ;
Garbet, X. ;
Villard, L. ;
Bottino, A. ;
Jolliet, S. ;
Ghendrih, Ph. ;
Grandgirard, V. ;
McMillan, B. F. ;
Sarazin, Y. ;
Dif-Pradalier, G. ;
Tran, T. M. .
PHYSICS OF PLASMAS, 2008, 15 (06)
[2]   ORBITS IN ASYMMETRIC TOROIDAL MAGNETIC-FIELDS [J].
CARY, JR ;
HEDRICK, CL ;
TOLLIVER, JS .
PHYSICS OF FLUIDS, 1988, 31 (06) :1586-1600
[3]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[4]   Zonal flows and ion temperature gradient instabilities in multiple-helicity magnetic fields [J].
Ferrando-Margalet, S. ;
Sugama, H. ;
Watanabe, T. -H. .
PHYSICS OF PLASMAS, 2007, 14 (12)
[5]   NON-LINEAR GYROKINETIC EQUATIONS FOR LOW-FREQUENCY ELECTROMAGNETIC-WAVES IN GENERAL PLASMA EQUILIBRIA [J].
FRIEMAN, EA ;
CHEN, L .
PHYSICS OF FLUIDS, 1982, 25 (03) :502-508
[6]   Plasma shaping effects on the geodesic acoustic mode in toroidally axisymmetric plasmas [J].
Gao, Zhe ;
Wang, Ping ;
Sanuki, H. .
PHYSICS OF PLASMAS, 2008, 15 (07)
[7]   PHYSICS OPTIMIZATION OF STELLARATORS [J].
GRIEGER, G ;
LOTZ, W ;
MERKEL, P ;
NUHRENBERG, J ;
SAPPER, J ;
STRUMBERGER, E ;
WOBIG, H ;
BURHENN, R ;
ERCKMANN, V ;
GASPARINO, U ;
GIANNONE, L ;
HARTFUSS, HJ ;
JAENICKE, R ;
KUHNER, G ;
RINGLER, H ;
WELLER, A ;
WAGNER, F .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :2081-2091
[8]  
HAZELTINE RD, 1992, PLASMA CONFINEMENT, P298
[9]   Drift waves and transport [J].
Horton, W .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :735-778
[10]   Physics of zonal flows [J].
Itoh, K. ;
Itoh, S. -I. ;
Diamond, P. H. ;
Hahm, T. S. ;
Fujisawa, A. ;
Tynan, G. R. ;
Yagi, M. ;
Nagashima, Y. .
PHYSICS OF PLASMAS, 2006, 13 (05)