Γ-supercyclicity of families of translates in weighted Lp-spaces on locally compact groups

被引:3
作者
Abbar, Arafat [1 ]
Kuznetsova, Yulia [2 ]
机构
[1] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, CNRS, F-77447 Marne La Vallee, France
[2] Univ Bourgogne Franche Comte, 16 Route Gray, F-25030 Besancon, France
关键词
Hypercyclicity; Locally compact groups; Supercyclicity; Gamma-supercyclicity; Translation semigroup; Weighted spaces;
D O I
10.1016/j.jmaa.2020.124709
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let omega be a weight function defined on a locally compact group G, 1 <= p < +infinity, S subset of G and let us assume that for any s is an element of S, the left translation operator T-s is continuous from the weighted L-p-space L-p(G, omega) into itself. For a given set Gamma subset of C, a vector f is an element of L-p(G, omega) is said to be (Gamma, S)-dense if the set {lambda T(s)f : lambda is an element of Gamma, s is an element of S} is dense in L-p(G, omega). In this paper, we characterize the existence of (Gamma, S)-dense vectors in L-p(G, omega) in terms of the weight and the set Gamma. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 17 条
  • [1] Density of translates in weighted Lp spaces on locally compact groups
    Abakumov, Evgeny
    Kuznetsova, Yulia
    [J]. MONATSHEFTE FUR MATHEMATIK, 2017, 183 (03): : 397 - 413
  • [2] Bayart F, 2009, CAMB TRACT MATH, P1, DOI 10.1017/CBO9780511581113
  • [3] Γ-supercyclicity
    Charpentier, S.
    Ernst, R.
    Menet, Q.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4443 - 4465
  • [4] Hypercyclic weighted translations generated by non-torsion elements
    Chen, Chung-Chuan
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (02) : 135 - 141
  • [5] SUPERCYCLIC AND CESARO HYPERCYCLIC WEIGHTED TRANSLATIONS ON GROUPS
    Chen, Chung-Chuan
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (05): : 1815 - 1827
  • [6] De Vries J., 1978, COLLOQ MATH-WARSAW, V39, P319
  • [7] Hypercyclic and chaotic semigroups of linear operators
    Desch, W
    Schappacher, W
    Webb, GF
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 793 - 819
  • [8] EDWARDS R. E., 1959, T AM MATH SOC, V93, P369, DOI [10.2307/1993502, 10.1090/s0002-9947-1959-0112050-4, DOI 10.1090/S0002-9947-1959-0112050-4]
  • [9] Feichtinger H. G., 1979, sterreich. Akad. Wiss. Math. Natur. Kl. Sitzungsber. II, V188, P451
  • [10] Grosse-Erdmann K.-G., 2011, LINEAR CHAOS