Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres

被引:137
作者
Wu, DZ [1 ]
Ge, XW [1 ]
Zhang, ZC [1 ]
Wang, MZ [1 ]
Zhang, SL [1 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, Hefei 230026, Anhui, Peoples R China
关键词
D O I
10.1021/la049405d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.
引用
收藏
页码:5192 / 5195
页数:4
相关论文
共 39 条
[1]   Facile synthesis of hollow nickel submicrometer spheres [J].
Bao, JC ;
Liang, YY ;
Xu, Z ;
Si, L .
ADVANCED MATERIALS, 2003, 15 (21) :1832-1835
[2]   CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals [J].
Braun, PV ;
Stupp, SI .
MATERIALS RESEARCH BULLETIN, 1999, 34 (03) :463-469
[3]   Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals [J].
Breen, ML ;
Dinsmore, AD ;
Pink, RH ;
Qadri, SB ;
Ratna, BR .
LANGMUIR, 2001, 17 (03) :903-907
[4]   Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly [J].
Caruso, F .
COLLOID CHEMISTRY II, 2003, 227 :145-168
[5]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[6]   Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres [J].
Caruso, RA ;
Susha, A ;
Caruso, F .
CHEMISTRY OF MATERIALS, 2001, 13 (02) :400-409
[7]   Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes [J].
Cha, JN ;
Birkedal, H ;
Euliss, LE ;
Bartl, MH ;
Wong, MS ;
Deming, TJ ;
Stucky, GD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (27) :8285-8289
[8]   Colloidosomes: Selectively permeable capsules composed of colloidal particles [J].
Dinsmore, AD ;
Hsu, MF ;
Nikolaides, MG ;
Marquez, M ;
Bausch, AR ;
Weitz, DA .
SCIENCE, 2002, 298 (5595) :1006-1009
[9]   Interfacial synthesis of hollow microspheres of mesostructured silica [J].
Fowler, CE ;
Khushalani, D ;
Mann, S .
CHEMICAL COMMUNICATIONS, 2001, (19) :2028-2029
[10]   Conducting polymer nanocomposites: A brief overview [J].
Gangopadhyay, R ;
De, A .
CHEMISTRY OF MATERIALS, 2000, 12 (03) :608-622