Exact product forms for the simple cubic lattice Green function II

被引:7
|
作者
Joyce, GS [1 ]
Delves, RT [1 ]
机构
[1] Kings Coll London, Wheatstone Phys Lab, London WC2R 2LS, England
来源
关键词
D O I
10.1088/0305-4470/37/20/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytical properties of the lattice Green function [GRAPHICS] are investigated, where n is an integer and w is a complex variable. In particular, it is shown that G(2n, n, n; w) is a solution of a fourth-order linear differential equation of the Fuchsian type. From this differential equation it is found that G(2n, n, n; w) can be evaluated in terms of a product of two Heun functions {H-j (n, v) j = 1, 2}, where [GRAPHICS] and (a)(n) denotes the Pochhammer symbol. This formula is valid for varying values of w in the neighbourhood of w = infinity, provided that the argument function eta(+)(w) does not take real values in the interval (1, +infinity). Finally, this F-2(1) product form is used to determine the asymptotic behaviour of G(2n, n, n; w) as n --> infinity.
引用
收藏
页码:5417 / 5447
页数:31
相关论文
共 50 条
  • [41] EXACT MODELING OF CUBIC LATTICE PERMITTIVITY AND CONDUCTIVITY
    MCKENZIE, DR
    MCPHEDRAN, RC
    NATURE, 1977, 265 (5590) : 128 - 129
  • [42] On the cubic modular transformation and the cubic lattice Green functions
    Joyce, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (22): : 5105 - 5115
  • [44] Thermodynamics and diffusion of a lattice gas on a simple cubic lattice
    Argyrakis, P
    Groda, YG
    Bokun, GS
    Vikhrenko, VS
    PHYSICAL REVIEW E, 2001, 64 (06)
  • [45] On binary cubic forms: II
    Hooley, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 521 : 185 - 240
  • [46] On octonary cubic forms: II
    Hooley, Christopher
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 85 - 94
  • [47] Thermodynamics and diffusion of a lattice gas on a simple cubic lattice
    Argyrakis, Panos
    Groda, Yaroslav G.
    Bokun, George S.
    Vikhrenko, Vyacheslav S.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 II): : 1 - 066108
  • [48] On the Ising model for the simple cubic lattice
    Haggkvist, R.
    Rosengren, A.
    Lundow, P. H.
    Markstrom, K.
    Andren, D.
    Kundrotas, P.
    ADVANCES IN PHYSICS, 2007, 56 (05) : 653 - 755
  • [49] THERMODYNAMICS OF A SIMPLE CUBIC ISING LATTICE
    MASHKOV, SA
    SOVIET PHYSICS JETP-USSR, 1966, 22 (03): : 596 - &
  • [50] Percolation in a simple cubic lattice with distortion
    Mitra, Sayantan
    Saha, Dipa
    Sensharma, Ankur
    PHYSICAL REVIEW E, 2022, 106 (03)