Exact product forms for the simple cubic lattice Green function II

被引:7
|
作者
Joyce, GS [1 ]
Delves, RT [1 ]
机构
[1] Kings Coll London, Wheatstone Phys Lab, London WC2R 2LS, England
来源
关键词
D O I
10.1088/0305-4470/37/20/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytical properties of the lattice Green function [GRAPHICS] are investigated, where n is an integer and w is a complex variable. In particular, it is shown that G(2n, n, n; w) is a solution of a fourth-order linear differential equation of the Fuchsian type. From this differential equation it is found that G(2n, n, n; w) can be evaluated in terms of a product of two Heun functions {H-j (n, v) j = 1, 2}, where [GRAPHICS] and (a)(n) denotes the Pochhammer symbol. This formula is valid for varying values of w in the neighbourhood of w = infinity, provided that the argument function eta(+)(w) does not take real values in the interval (1, +infinity). Finally, this F-2(1) product form is used to determine the asymptotic behaviour of G(2n, n, n; w) as n --> infinity.
引用
收藏
页码:5417 / 5447
页数:31
相关论文
共 50 条
  • [21] LATTICE GREEN FUNCTION FOR ANISOTROPIC FACE CENTRED CUBIC LATTICE
    JOYCE, GS
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (03): : L53 - +
  • [22] Lattice green's function for the face centered cubic lattice
    Hijjawi, RS
    Asad, JH
    Sakaj, A
    Khalifeh, JM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (08) : 1259 - 1270
  • [23] Lattice Green's Function for the Face Centered Cubic Lattice
    R. S. Hijjawi
    J. H. Asad
    A. Sakaj
    J. M. Khalifeh
    International Journal of Theoretical Physics, 2005, 44 : 1259 - 1270
  • [24] Lattice Green's function for the face centered cubic lattice
    Hijjawi, RS
    Asad, JH
    Sakaji, A
    Khalifeh, JM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (11) : 2299 - 2309
  • [25] Fermionic path integral for exact enumeration of polygons on the simple cubic lattice
    Viswanathan, G. M.
    PHYSICAL REVIEW B, 2023, 108 (01)
  • [26] Lattice Green's function for the body-centered cubic lattice
    Sakaji, A
    Hijjawi, RS
    Shawagfeh, N
    Khalifeh, JM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (05) : 973 - 983
  • [27] Lattice Green's Function for the Body-Centered Cubic Lattice
    A. Sakaji
    R. S. Hijjawi
    N. Shawagfeh
    J. M. Khalifeh
    International Journal of Theoretical Physics, 2002, 41 : 973 - 983
  • [28] Remarks on the Lattice Green Function for the Anisotropic Face Centered Cubic Lattice
    Asad, J. H.
    Hijjawi, R. S.
    Hasan, Eyad Hasan
    Diab, A. A.
    Khalifeh, J. M.
    ACTA PHYSICA POLONICA A, 2016, 129 (01) : 52 - 58
  • [29] POLYNOMIAL APPROXIMATION FOR IMAGINARY PART OF LATTICE GREENS FUNCTION FOR SIMPLE CUBIC LATTICE
    HEINER, E
    SCHNEIDE.J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 49 (01): : K37 - &
  • [30] DISLOCATIONS IN A SIMPLE CUBIC LATTICE
    NABARRO, FRN
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1947, 59 (332): : 256 - 272