Exact product forms for the simple cubic lattice Green function II

被引:7
|
作者
Joyce, GS [1 ]
Delves, RT [1 ]
机构
[1] Kings Coll London, Wheatstone Phys Lab, London WC2R 2LS, England
来源
关键词
D O I
10.1088/0305-4470/37/20/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytical properties of the lattice Green function [GRAPHICS] are investigated, where n is an integer and w is a complex variable. In particular, it is shown that G(2n, n, n; w) is a solution of a fourth-order linear differential equation of the Fuchsian type. From this differential equation it is found that G(2n, n, n; w) can be evaluated in terms of a product of two Heun functions {H-j (n, v) j = 1, 2}, where [GRAPHICS] and (a)(n) denotes the Pochhammer symbol. This formula is valid for varying values of w in the neighbourhood of w = infinity, provided that the argument function eta(+)(w) does not take real values in the interval (1, +infinity). Finally, this F-2(1) product form is used to determine the asymptotic behaviour of G(2n, n, n; w) as n --> infinity.
引用
收藏
页码:5417 / 5447
页数:31
相关论文
共 50 条
  • [1] Exact product forms for the simple cubic lattice Green function: I
    Joyce, GS
    Delves, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (11): : 3645 - 3671
  • [2] Exact product form for the anisotropic simple cubic lattice Green function
    Delves, R. T.
    Joyce, G. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (16): : 4119 - 4145
  • [3] Exact evaluation of the Green function for the anisotropic simple cubic lattice
    Delves, RT
    Joyce, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08): : L59 - L65
  • [4] Derivation of exact product forms for the simple cubic lattice Green function using Fourier generating functions and Lie group identities
    Delves, R. T.
    Joyce, G. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : 8329 - 8343
  • [5] Exact evaluation of the simple cubic lattice Green function for a general lattice point
    Joyce, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (46): : 9811 - 9828
  • [6] LATTICE GREEN-FUNCTION FOR SIMPLE CUBIC LATTICE
    JOYCE, GS
    JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (08): : L65 - +
  • [7] SIMPLE CUBIC LATTICE GREEN-FUNCTION
    JOYCE, GS
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1973, 273 (1236): : 583 - 610
  • [8] On the Green function for the anisotropic simple cubic lattice
    Delves, RT
    Joyce, GS
    ANNALS OF PHYSICS, 2001, 291 (01) : 71 - 133
  • [9] Exact partition function zeros of a polymer on a simple cubic lattice
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Lee, Julian
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [10] EXACT EVALUATION OF BODY CENTRED CUBIC LATTICE GREEN FUNCTION
    JOYCE, GS
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (12): : 1510 - +