Improved evaluation method of the soil wind erosion intensity based on the cloud-AHP model under the stress of global climate change

被引:47
作者
Guo, Bing [1 ,2 ,3 ,4 ,6 ,8 ]
Zang, Wenqian [5 ,7 ]
Yang, Xiao [1 ]
Huang, Xiangzhi [5 ,7 ]
Zhang, Rui [8 ]
Wu, Hongwei [1 ]
Yang, Luoan [1 ]
Wang, Zhen [1 ]
Sun, Guangqiang [1 ]
Zhang, Yi [1 ]
机构
[1] Shandong Univ Technol, Sch Civil Architectural Engn, Zibo 255000, Shandong, Peoples R China
[2] Lanzhou Univ, MOE Key Lab Western Chinas Environm Syst, Lanzhou 730000, Gansu, Peoples R China
[3] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100101, Peoples R China
[4] Key Lab Geomat & Digital Technol Shandong Prov, Qingdao 266590, Peoples R China
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
[6] Geomat Technol & Applicat Key Lab Qinghai Prov, Xining 810001, Peoples R China
[7] Zhongke Langfang Inst Spatial Informat Applicat, Langfang 065000, Hebei, Peoples R China
[8] Minist Nat Resources, Land Satellite Remote Sensing Applicat Ctr, Beijing 100048, Peoples R China
关键词
Soil wind erosion; Soil erodibility; Cloud-AHP model; Soil crust factor; Terrain roughness; PREDICTION SYSTEM; WATER EROSION; YELLOW-RIVER; INFORMATION; REGION; CHINA;
D O I
10.1016/j.scitotenv.2020.141271
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Under the stress of global climate change, soil wind erosion has become a major environmental issue in the Three-River Source Region (TRSR) of China. However, few large-scale studies have been conducted on soil wind erosion owing to the lack of investigational data or complex parameters. Moreover, the uncertainty and randomness in the weight determination process cannot be avoided using the traditional method. Thus, a cloud-analytic hierarchy process (cloud-AHP) model was proposed to construct a wind erosion intensity index model for the TRSR based on seven typical land surface parameters. The following results were obtained. (1) The cloud-AHP model can better eliminate the randomness and uncertainty in the weight determination process. (2) The proposed evaluation method of wind erosion intensity has better applicability in the TRSR with overall accuracy of 93%. (3) The overall wind erosion intensity in this region is moderate. The wind erosion intensity was the largest in the Yangtze River (0.55, moderate erosion) and smallest in the source region of the Lancang River (0.50, mild erosion). (4) Significant differences are observed in the influences of various vegetation types on wind erosion intensity. Bare land exhibits the highest wind erosion intensity, whereas a coniferous forest exhibits the smallest. Moreover, grassland is a key control zone of soil and water conservation because it has the largest spatial heterogeneity of internal erosion intensity. These results can provide data and technical support for preventing and controlling soil erosion and protecting the environment in the region. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 46 条
  • [41] Yang X., 2011, J NAT DISASTERS, V8, P32
  • [42] Yang X.C., 2003, AGR RES ARID AREAS, V21, P4, DOI [10.3321/j.issn:1000-7601.2003.04.035, DOI 10.3321/J.ISSN:1000-7601.2003.04.035]
  • [43] YANG Y, 1990, Acta Pedologica Sinica, V27, P73
  • [44] Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations
    Zhang, Hongbo
    Zhang, Fan
    Che, Tao
    Wang, Shijin
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 724
  • [45] A Study on Distributed Simulation of Soil Wind Erosion and Its Application to the Tuhaimajia River Basin
    Zhao Yong
    Pei Yuan-sheng
    [J]. INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS AND ECOSYSTEM CONSERVATION (ISEIS 2010), 2010, 2 : 1555 - 1568
  • [46] Zhu Dun Zhu Dun, 2010, Transactions of the Chinese Society of Agricultural Engineering, V26, P103