The impact of a natural time change on the convergence of the Crank-Nicolson scheme

被引:9
作者
Reisinger, Christoph [1 ]
Whitley, Alan [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
关键词
heat equation; Crank-Nicolson scheme; convergence; Black-Scholes; European option; American option; asymptotics; time change; ASIAN OPTIONS; AMERICAN;
D O I
10.1093/imanum/drt029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first analyse the effect of a square root transformation to the time variable on the convergence of the Crank-Nicolson scheme when applied to the solution of the heat equation with Dirac delta function initial conditions. In the original variables, the scheme is known to diverge as the time step is reduced with the ratio, lambda, of the time step to space step held constant, and the value of lambda controls how fast the divergence occurs. After introducing the square-root-of-time variable, we prove that the numerical scheme for the transformed partial differential equation now always converges and that lambda controls the order of convergence, quadratic convergence being achieved for lambda below a critical value. Numerical results indicate that the time change used with an appropriate value of lambda also results in quadratic convergence for the calculation of the price, delta and gamma for standard European and American options without the need for Rannacher start-up steps.
引用
收藏
页码:1156 / 1192
页数:37
相关论文
共 22 条
[1]   Numerical solution of variational inequalities for pricing Asian options by higher order Lagrange-Galerkin methods [J].
Bermudez, Alfredo ;
Nogueiras, Maria R. ;
Vazquez, Carlos .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) :1256-1270
[2]  
Carter R., 2006, J COMPUT FINANC, V9, P89, DOI [DOI 10.21314/JCF.2006.152, 10.21314/JCF.2006.152]
[3]  
Carter R, 2007, IMA J NUMER ANAL, V27, P406, DOI [10.1093/imanum/dr1043, 10.1093/imanum/drl043]
[4]  
Chen XF, 2008, MATH FINANC, V18, P185
[5]   A semi-Lagrangian approach for American Asian options under jump diffusion [J].
D'Halluin, Y ;
Forsyth, PA ;
Labahn, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (01) :315-345
[6]   Quadratic convergence for valuing American options using a penalty method [J].
Forsyth, PA ;
Vetzal, KR .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :2095-2122
[7]  
Giles MB, 2002, ACT NUMERIC, V11, P145, DOI 10.1017/S096249290200003X
[8]  
Haug Espen Gaardner, 2007, The complete guide to option pricing formulas
[9]   Pricing exotic options with L-stable Pade schemes [J].
Khaliq, A. Q. M. ;
Voss, D. A. ;
Yousuf, M. .
JOURNAL OF BANKING & FINANCE, 2007, 31 (11) :3438-3461
[10]   ON THE SMOOTHING PROPERTY OF THE CRANK-NICOLSON SCHEME [J].
LUSKIN, M ;
RANNACHER, R .
APPLICABLE ANALYSIS, 1982, 14 (02) :117-135