Optimizing dose enhancement with Ta2O5 nanoparticles for synchrotron microbeam activated radiation therapy

被引:22
作者
Engels, Elette [1 ]
Corde, Stephanie [1 ,2 ]
McKinnon, Sally [1 ]
Incerti, Sebastien [3 ,4 ]
Konstantinov, Konstantin [5 ,6 ]
Rosenfeld, Anatoly [1 ,5 ]
Tehei, Moeava [1 ,5 ,7 ]
Lerch, Michael [1 ,5 ]
Guatelli, Susanna [1 ,5 ]
机构
[1] Univ Wollongong, CMRP, Wollongong, NSW 2522, Australia
[2] Prince Wales Hosp, Dept Radiat Oncol, Randwick, NSW, Australia
[3] Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, CNRS IN2P3, Chemin Solarium, F-33175 Gradignan, France
[4] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, Chemin Solarium, F-33175 Gradignan, France
[5] Univ Wollongong, IHMRI, Wollongong, NSW 2522, Australia
[6] Univ Wollongong, ISEM, Wollongong, NSW 2522, Australia
[7] Univ Wollongong, CMMB, Wollongong, NSW 2522, Australia
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2016年 / 32卷 / 12期
基金
英国医学研究理事会;
关键词
Nanoparticle; Microbeam radiation therapy; Dose enhancement; Geant4; BYSTANDER; CELLS;
D O I
10.1016/j.ejmp.2016.10.024
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Microbeam Radiation Therapy (MRT) exploits tumour selectivity and normal tissue sparing with spatially fractionated kilovoltage X-ray microbeams through the dose volume effect. Experimental measurements with Ta2O5 nanoparticles (NPs) in 9L gliosarcoma treated with MRT at the Australian Synchrotron, increased the treatment efficiency. Ta2O5 NPs were observed to form shells around cell nuclei which may be the reason for their efficiency in MRT. In this article, our experimental observation of NP shell formation is the basis of a Geant4 radiation transport study to characterise dose enhancement by Ta2O5 NPs in MRT. Our study showed that NP shells enhance the physical dose depending microbeam energy and their location relative to a single microbeam. For monochromatic microbeam energies below similar to 70 keV, NP shells show highly localised dose enhancement due to the short range of associated secondary electrons. Low microbeam energies indicate better targeted treatment by allowing higher microbeam doses to be administered to tumours and better exploit the spatial fractionation related selectivity observed with MRT. For microbeam energies above similar to 100 keV, NP shells extend the physical dose enhancement due to longer-range secondary electrons. Again, with NPs selectively internalised, the local effectiveness of MRT is expected to increase in the tumour. Dose enhancement produced by the shell aggregate varied more significantly in the cell population, depending on its location, when compared to a homogeneous NP distribution. These combined simulation and experimental data provide first evidence for optimising MRT through the incorporation of newly observed Ta2O5 NP distributions within 9L cancer cells. (C) 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1852 / 1861
页数:10
相关论文
共 36 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[4]   Evolution of a focal brain lesion produced by interlaced microplanar X-rays [J].
Anschel, D. J. ;
Romanelli, P. ;
Benveniste, H. ;
Foerster, B. ;
Kalef-Ezra, J. ;
Zhong, Z. ;
Dilmanian, F. A. .
MINIMALLY INVASIVE NEUROSURGERY, 2007, 50 (01) :43-46
[5]  
Berger MJ., 2005, ESTAR, PSTAR, and ASTAR: Computer programs for calculating Stopping-Power and range Tables for electrons. Protons, and Helium Ions (version 1.2.3)
[6]   Effects of microbeam radiation therapy on normal and tumoral blood vessels [J].
Bouchet, Audrey ;
Serduc, Raphaeel ;
Laissue, Jean Albert ;
Djonov, Valentin .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (06) :634-641
[7]   PREFERENTIAL EFFECT OF SYNCHROTRON MICROBEAM RADIATION THERAPY ON INTRACEREBRAL 9L GLIOSARCOMA VASCULAR NETWORKS [J].
Bouchet, Audrey ;
Lemasson, Benjamin ;
Le Duc, Geraldine ;
Maisin, Cecile ;
Brauer-Krisch, Elke ;
Siegbahn, Erik Albert ;
Renaud, Luc ;
Khalil, Enam ;
Remy, Chantal ;
Poillot, Cathy ;
Bravin, Alberto ;
Laissue, Jean A. ;
Barbier, Emmanuel L. ;
Serduc, Raphael .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (05) :1503-1512
[8]   Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT) [J].
Braeuer-Krisch, Elke ;
Adam, Jean-Francois ;
Alagoz, Enver ;
Bartzsch, Stefan ;
Crosbie, Jeff ;
DeWagter, Carlos ;
Dipuglia, Andrew ;
Donzelli, Mattia ;
Doran, Simon ;
Fournier, Pauline ;
Kalef-Ezra, John ;
Kock, Angela ;
Lerch, Michael ;
McErlean, Ciara ;
Oelfke, Uwe ;
Olko, Pawel ;
Petasecca, Marco ;
Povoli, Marco ;
Rosenfeld, Anatoly ;
Siegbahn, Erik A. ;
Sporea, Dan ;
Stugu, Bjarne .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (06) :568-583
[9]   SYRA3 COST Action - Microbeam radiation therapy: Roots and prospects [J].
Bravin, Alberto ;
Olko, Pawel ;
Schueltke, Elisabeth ;
Wilkens, Jan J. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (06) :561-563
[10]   High-Z Nanostructured Ceramics in Radiotherapy: First Evidence of Ta2O5-Induced Dose Enhancement on Radioresistant Cancer Cells in an MV Photon Field [J].
Brown, Ryan ;
Tehei, Moeava ;
Oktaria, Sianne ;
Briggs, Adam ;
Stewart, Callum ;
Konstantinov, Konstantin ;
Rosenfeld, Anatoly ;
Corde, Stephanie ;
Lerch, Michael .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (04) :500-505