Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line

被引:218
作者
Subramanian, A. Z. [1 ,2 ]
Neutens, P. [3 ]
Dhakal, A. [1 ,2 ]
Jansen, R. [3 ]
Claes, T. [3 ]
Rottenberg, X. [3 ]
Peyskens, F. [1 ,2 ]
Selvaraja, S. [1 ,2 ,3 ]
Helin, P. [3 ]
Du Bois, B. [3 ]
Leyssens, K. [3 ]
Severi, S. [3 ]
Deshpande, P. [3 ]
Baets, R. [1 ,2 ]
Van Dorpe, P. [3 ]
机构
[1] Univ Ghent, IMEC, Photon Res Grp, B-9000 Ghent, Belgium
[2] Univ Ghent, Ctr Nano & Biophoton, B-9000 Ghent, Belgium
[3] IMEC, B-3001 Louvain, Belgium
来源
IEEE PHOTONICS JOURNAL | 2013年 / 5卷 / 06期
关键词
Waveguides; waveguide devices; fabrication and characterization; photonic materials; gratings; GRATING COUPLER;
D O I
10.1109/JPHOT.2013.2292698
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
PECVD silicon nitride photonic wire waveguides have been fabricated in a CMOS pilot line. Both clad and unclad single mode wire waveguides were measured at lambda = 532, 780, and 900 nm, respectively. The dependence of loss on wire width, wavelength, and cladding is discussed in detail. Cladded multimode and singlemode waveguides show a loss well below 1 dB/cm in the 532-900 nm wavelength range. For singlemode unclad waveguides, losses < 1 dB/cm were achieved at lambda = 900 nm, whereas losses were measured in the range of 1-3 dB/cm for lambda = 780 and 532 nm, respectively.
引用
收藏
页数:9
相关论文
共 16 条
[1]   Silicon photonic sensors incorporated in a digital microfluidic system [J].
Arce, Cristina Lerma ;
Witters, Daan ;
Puers, Robert ;
Lammertyn, Jeroen ;
Bienstman, Peter .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 404 (10) :2887-2894
[2]   Waveguide confined Raman spectroscopy for microfluidic interrogation [J].
Ashok, Praveen C. ;
Singh, Gajendra P. ;
Rendall, Helen A. ;
Krauss, Thomas F. ;
Dholakia, Kishan .
LAB ON A CHIP, 2011, 11 (07) :1262-1270
[3]   Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers [J].
Bienstman, P ;
Baets, R .
OPTICAL AND QUANTUM ELECTRONICS, 2001, 33 (4-5) :327-341
[4]   Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line [J].
Daldosso, N ;
Melchiorri, M ;
Riboli, F ;
Girardini, M ;
Pucker, G ;
Crivellari, M ;
Bellutti, P ;
Lui, A ;
Pavesi, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (07) :1734-1740
[5]  
Fan XD, 2011, NAT PHOTONICS, V5, P591, DOI [10.1038/NPHOTON.2011.206, 10.1038/nphoton.2011.206]
[6]   Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties [J].
Gorin, A. ;
Jaouad, A. ;
Grondin, E. ;
Aimez, V. ;
Charette, P. .
OPTICS EXPRESS, 2008, 16 (18) :13509-13516
[7]  
Goykhman I., 2010, APPL PHYS LETT, V97
[8]   Loss-based optical trap for on-chip particle analysis [J].
Kuehn, S. ;
Measor, P. ;
Lunt, E. J. ;
Phillips, B. S. ;
Deamer, D. W. ;
Hawkins, A. R. ;
Schmidt, H. .
LAB ON A CHIP, 2009, 9 (15) :2212-2216
[9]   An integrated optical interferometric nanodevice based on silicon technology for biosensor applications [J].
Prieto, F ;
Sepúlveda, B ;
Calle, A ;
Llobera, A ;
Domínguez, C ;
Abad, A ;
Montoya, A ;
Lechuga, LM .
NANOTECHNOLOGY, 2003, 14 (08) :907-912
[10]   Grating-Based Optical Fiber Interfaces for Silicon-on-Insulator Photonic Integrated Circuits [J].
Roelkens, G. ;
Vermeulen, D. ;
Selvaraja, S. ;
Halir, R. ;
Bogaerts, W. ;
Van Thourhout, D. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (03) :571-580