Linear relationship among nonlinear transport-depletion problem: Forensics of enrichment and burnup of PWR

被引:3
作者
Zhang, Zhaozhan [1 ]
Yang, Jinmin [1 ]
Qiu, Wenxin [1 ]
Shi, Jiajian [1 ]
Yuan, Cenxi [1 ]
Zhang, Chunyu [1 ]
Zhu, Jianyu [2 ]
Su, Jiahang [2 ]
Chen, Shengli [1 ]
Ge, Yulin [1 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[2] China Acad Engn Phys, Ctr Strateg Studies, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Nuclear forensics; Transport and burnup problem; Linear relationship; SFCOMPO-2; 0; NUCLEAR FORENSICS; REACTOR-FUEL; PLUTONIUM; DISCRIMINATION; EXTENSION; URANIUM; ORIGIN;
D O I
10.1016/j.anucene.2022.109121
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In the process of nuclear forensics, burnup and initial fuel enrichment are two important tracing indicators. They are generally related to the isotopic components by a highly nonlinear depletion-coupled transport equation. However, some linear correlations in Pressurized Water Reactor (PWR) have been found experimentally based on a few fuel samples. The present work explores convinced linear correlations among the nonlinear transport-depletion problem in the nuclear reactors, between the element components of spent fuel and its burnup (initial enrichment). Firstly, the linear relationships among nonlinear transport-depletion problems are derived from the Bateman equation, which indicates that the ratios of important nuclides in spent fuel could be approximated by a limited burnup. Secondly, the linear relationships between the fuel enrichment, burnup, and ratios of isotopic concentrations have been tested by experimental and simulated data. The result shows that the linear relationships are satisfied in typical PWR. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 23 条
[1]   ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data [J].
Brown, D. A. ;
Chadwick, M. B. ;
Capote, R. ;
Kahler, A. C. ;
Trkov, A. ;
Herman, M. W. ;
Sonzogni, A. A. ;
Danon, Y. ;
Carlson, A. D. ;
Dunn, M. ;
Smith, D. L. ;
Hale, G. M. ;
Arbanas, G. ;
Arcilla, R. ;
Bates, C. R. ;
Beck, B. ;
Becker, B. ;
Brown, F. ;
Casperson, R. J. ;
Conlin, J. ;
Cullen, D. E. ;
Descalle, M. -A. ;
Firestone, R. ;
Gaines, T. ;
Guber, K. H. ;
Hawari, A. I. ;
Holmes, J. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Koning, A. J. ;
Kopecky, S. ;
Leal, L. ;
Lestone, J. P. ;
Lubitz, C. ;
Marquez Damian, J. I. ;
Mattoon, C. M. ;
McCutchan, E. A. ;
Mughabghab, S. ;
Navratil, P. ;
Neudecker, D. ;
Nobre, G. P. A. ;
Noguere, G. ;
Paris, M. ;
Pigni, M. T. ;
Plompen, A. J. ;
Pritychenko, B. ;
Pronyaev, V. G. ;
Roubtsov, D. ;
Rochman, D. .
NUCLEAR DATA SHEETS, 2018, 148 :1-142
[2]  
Deng L.., 2015, 3 D MONTE CARLO NEUT
[3]  
Gauld I., 2014, OECD NEA BENCHMARK D
[4]   Classification of Spent Reactor Fuel for Nuclear Forensics [J].
Jones, Andrew E. ;
Turner, Phillip ;
Zimmerman, Colin ;
Goulermas, John Y. .
ANALYTICAL CHEMISTRY, 2014, 86 (11) :5399-5405
[5]  
Kim J.-S., 1997, NUCL ENG TECHNOL, V29, P327
[6]   ANALYSIS OF HIGH BURNUP PRESSURIZED WATER REACTOR FUEL USING URANIUM, PLUTONIUM, NEODYMIUM, AND CESIUM ISOTOPE CORRELATIONS WITH BURNUP [J].
Kim, Jung Suk ;
Jeon, Young Shin ;
Park, Soon Dal ;
Ha, Yeong-Keong ;
Song, Kyuseok .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2015, 47 (07) :924-933
[7]   Plutonium fingerprinting in nuclear forensics of spent nuclear fuel [J].
Lantzos, I. ;
Kouvalaki, Ch ;
Nicolaou, G. .
PROGRESS IN NUCLEAR ENERGY, 2015, 85 :333-336
[8]   Extension of the TRANSURANUS burnup model to heavy water reactor conditions [J].
Lassmann, K ;
Walker, CT ;
van de Laar, J .
JOURNAL OF NUCLEAR MATERIALS, 1998, 255 (2-3) :222-233
[9]   THE RADIAL-DISTRIBUTION OF PLUTONIUM IN HIGH BURNUP UO2 FUELS [J].
LASSMANN, K ;
OCARROLL, C ;
VANDELAAR, J ;
WALKER, CT .
JOURNAL OF NUCLEAR MATERIALS, 1994, 208 (03) :223-231
[10]  
Lee C. B.., 1999, RAPID PROGRAM PREDIC