Bipotential deposition of nickel-cobalt hexacyanoferrate nanostructure on graphene coated stainless steel for supercapacitors

被引:23
作者
Ghasemi, Shahram [1 ]
Ojani, Reza [1 ]
Ausi, Solmaz [1 ]
机构
[1] Univ Mazandaran, Fac Chem, Babol Sar 4741695447, Iran
关键词
Graphene; Electrophoretic deposition; Bipotential method; Nickel-cobalt hexacyanoferrate; Supercapacitor; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; OXIDE; COMPOSITES; FABRICATION; FILM; NANOCOMPOSITE; REDUCTION; SURFACES; SHEETS;
D O I
10.1016/j.ijhydene.2014.07.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) was deposited on inexpensive and mechanically stable stainless steel (SS) electrode by electrophoretic deposition (EPD) technique. GO was reduced electrochemically in NaNO3 to obtain electrochemically reduced graphene oxide (ERGO). Next, Hybrid nickel-cobalt hexacyanofarrate (NiCoHCF) nanoparticles were deposited from solution containing Ni+2 and Co+2 with ratio of 1:1 on ERGO/SS by bipotential method. Morphological investigation of prepared sample by scanning electron microscopy showed the presence of nanoparticles with diameters in the range of 15-50 nm. Crystal structure of nanocomposite was investigated by X-ray diffraction technique. Electrochemical behavior of prepared film indicates that hybrid nanocomposite has higher specific capacitance (411 F g(-1)) than ERGO (185.2 F g(-1)) in KNO3 solution at current density of 0.2 A g(-1). In other words, pseudocapacitor that is formed based on the faradaic behavior of NiCoHCF can improve the capacitive performance of ERGO. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14918 / 14926
页数:9
相关论文
共 47 条
[1]   Growth of zinc hexacyanoferrate nanocubes and their potential as heterogeneous catalyst for solvent-free oxidation of benzyl alcohol [J].
Ali, S. R. ;
Bansal, V. K. ;
Khan, A. A. ;
Jain, S. K. ;
Ansari, M. A. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2009, 303 (1-2) :60-64
[2]   Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition [J].
An, Sung Jin ;
Zhu, Yanwu ;
Lee, Sun Hwa ;
Stoller, Meryl D. ;
Emilsson, Tryggvi ;
Park, Sungjin ;
Velamakanni, Aruna ;
An, Jinho ;
Ruoff, Rodney S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (08) :1259-1263
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[5]  
Bustos E, 2011, INT J ELECTROCHEM SC, V6, P1
[6]   Enhanced stability and electrocatalytic activity of a ruthenium-modified cobalt-hexacyanoferrate film electrode [J].
Cataldi, TRI ;
De Benedetto, G ;
Bianchini, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 471 (01) :42-47
[7]   Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications [J].
Chen, Da ;
Feng, Hongbin ;
Li, Jinghong .
CHEMICAL REVIEWS, 2012, 112 (11) :6027-6053
[8]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[9]   Porous CoO nanostructures grown on three-dimension graphene foams for supercapacitors electrodes [J].
Deng, Wei ;
Lan, Wei ;
Sun, Yaru ;
Su, Qing ;
Xie, Erqing .
APPLIED SURFACE SCIENCE, 2014, 305 :433-438
[10]   Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance [J].
Gao, Zan ;
Yang, Wanlu ;
Wang, Jun ;
Yan, Huijun ;
Yao, Yuan ;
Ma, Jing ;
Wang, Bin ;
Zhang, Milin ;
Liu, Lianhe .
ELECTROCHIMICA ACTA, 2013, 91 :185-194