The lattice gradient flow at tree-level and its improvement

被引:54
作者
Fodor, Zoltan [1 ,2 ,3 ]
Holland, Kieran [4 ,5 ]
Kuti, Julius [6 ]
Mondal, Santanu [3 ]
Nogradi, Daniel [3 ]
Wong, Chik Him [6 ]
机构
[1] Univ Wuppertal, Dept Phys, D-42097 Wuppertal, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] Eotvos Lorand Univ, Inst Theoret Phys, H-1117 Budapest, Hungary
[4] Univ Pacific, Stockton, CA 95211 USA
[5] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland
[6] Univ Calif San Diego, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Lattice Gauge Field Theories; Lattice Quantum Field Theory; CONTINUUM-LIMIT;
D O I
10.1007/JHEP09(2014)018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Yang-Mills gradient flow and the observable < E(t)>, defined by the square of the field strength tensor at t > 0, are calculated at finite lattice spacing and tree-level in the gauge coupling. Improvement of the flow, the gauge action and the observable are all considered. The results are relevant for two purposes. First, the discretization of the flow, gauge action and observable can be chosen in such a way that O(a(2)), O(a(4)) or even O(a(6)) improvement is achieved. Second, simulation results using arbitrary discretizations can be tree-level improved by the perturbatively calculated correction factor normalized to one in the continuum limit.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 31 条
[1]   Thermodynamics of SU(3) gauge theory from gradient flow on the lattice [J].
Asakawa, Masayuki ;
Hatsuda, Tetsuo ;
Itou, Etsuko ;
Kitazawa, Masakiyo ;
Suzuki, Hiroshi .
PHYSICAL REVIEW D, 2014, 90 (01)
[2]   Chiral perturbation theory for gradient flow observables [J].
Baer, Oliver ;
Golterman, Maarten .
PHYSICAL REVIEW D, 2014, 89 (03)
[3]  
Bazavov A., ARXIV13111474 MILC C
[4]   High-precision scale setting in lattice QCD [J].
Borsanyi, Szabolcs ;
Duerr, Stephan ;
Fodor, Zoltan ;
Hoelbling, Christian ;
Katz, Sandor D. ;
Krieg, Stefan ;
Kurth, Thorsten ;
Lellouch, Laurent ;
Lippert, Thomas ;
McNeile, Craig ;
Szabo, Kalman K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09)
[5]   Improving the continuum limit of gradient flow step scaling [J].
Cheng, Anqi ;
Hasenfratz, Anna ;
Liu, Yuzhi ;
Petropoulos, Gregory ;
Schaich, David .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05)
[6]   ZERO-MOMENTUM CONTRIBUTION TO WILSON LOOPS IN PERIODIC BOXES [J].
COSTE, A ;
GONZALEZARROYO, A ;
JURKIEWICZ, J ;
ALTES, CPK .
NUCLEAR PHYSICS B, 1985, 262 (01) :67-94
[7]   Space-time symmetries and the Yang-Mills gradient flow [J].
Deldebbio, L ;
Patella, A ;
Rago, A .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[8]  
Fodor Z., POS LATT 2012
[9]   The Yang-Mills gradient flow in finite volume [J].
Fodor, Zoltan ;
Holland, Kieran ;
Kuti, Julius ;
Nogradi, Daniel ;
Wong, Chik Him .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11)
[10]  
Fritzsch P., POS LATT 2013, P461