Multi-exposure image fusion based on wavelet transform

被引:9
|
作者
Zhang, Wenlong [1 ]
Liu, Xiaolin [2 ]
Wang, Wuchao [2 ]
Zeng, Yujun [2 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Hunan Prov Key Lab Image Measurement & Vis Nav, Changsha, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Mech Engn & Automat, 109 Deya Rd, Changsha 410073, Hunan, Peoples R China
来源
关键词
Wavelet; multi-exposure; image fusion; well-exposedness; scene luminance consistency; enhancement function;
D O I
10.1177/1729881418768939
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This article proposes a novel wavelet-based algorithm for the fusion of multi-exposed images. The luminance inversion is suppressed and the contrast of the fused image is enhanced, by introducing the brightness of input images into the well-exposedness weight. The weight is used to fuse the approximate sub-bands of input images in the wavelet domain. At the same time, the detail sub-bands of input images are fused by the adjusted contrast weight to avoid losing details around the strong edges. Besides, a novel enhancement function was proposed to enhance the details of the fused image. The proposed multi-exposure fusion scheme consists of three steps: (1) transforming the input images into YUV space and fusing the color-difference components U and V according to the saturation weight; (2) transforming the luminance component Y into the wavelet domain and fusing the corresponding approximate sub-bands and detail sub-bands by the well-exposedness weight and adjusted contrast weight, respectively; and (3) transforming the fused image back into RGB space to obtain the final result. The experiments illustrate that the proposed method is able to effectively preserve details, enhance contrast, and maintain consistency with the luminance distribution of input images.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Multi-exposure Image Fusion Method Based on Wavelet Packet Transform
    Wang, Qi
    Song, Zongxi
    Gao, Wei
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: INFRARED IMAGING AND APPLICATIONS, 2013, 8907
  • [2] Multi-exposure image fusion based on wavelet transform (vol 15, 2018)
    Zhang, Wenlong
    Liu, Xiaolin
    Wang, Wuchao
    Zeng, Yujun
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2018, 15 (03): : I - I
  • [3] Multi-exposure images of wavelet transform fusion
    Xu, Jianbo
    Huang, Youjun
    Wang, Jianli
    FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [4] MULTI-EXPOSURE IMAGE FUSION BASED ON EXPOSURE COMPENSATION
    Kinoshita, Yuma
    Yoshida, Taichi
    Shiota, Sayaka
    Kiya, Hitoshi
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1388 - 1392
  • [5] Multi-exposure image fusion based on tensor decomposition
    Shengcong Wu
    Ting Luo
    Yang Song
    Haiyong Xu
    Multimedia Tools and Applications, 2020, 79 : 23957 - 23975
  • [6] Multi-exposure image fusion based on tensor decomposition
    Wu, Shengcong
    Luo, Ting
    Song, Yang
    Xu, Haiyong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (33-34) : 23957 - 23975
  • [7] Multi-exposure Image Fusion Based on Attention Mechanism
    Bai Bendu
    Li Junpeng
    ACTA PHOTONICA SINICA, 2022, 51 (04) : 336 - 347
  • [8] Image dehazing algorithm based on artificial multi-exposure image fusion
    Rajasekaran, G.
    Abitha, V.
    Vaishnavi, S. M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 41241 - 41251
  • [9] Image dehazing algorithm based on artificial multi-exposure image fusion
    G. Rajasekaran
    V. Abitha
    S. M. Vaishnavi
    Multimedia Tools and Applications, 2023, 82 : 41241 - 41251
  • [10] Sand dust Image Enhancement Based on Multi-exposure Image Fusion
    Chen Hao
    Lai Huicheng
    Gao Guxue
    Wu Hao
    Qian Xuze
    ACTA PHOTONICA SINICA, 2021, 50 (09) : 300 - 312