MUTUAL INTERPRETABILITY OF ROBINSON ARITHMETIC AND ADJUNCTIVE SET THEORY WITH EXTENSIONALITY

被引:8
作者
Damnjanovic, Zlatan [1 ]
机构
[1] Univ Southern Calif, Sch Philosophy, Los Angeles, CA 90089 USA
关键词
Robinson arithmetic; interpretability; adjunctive set theory; extensionality; string theory; concatenation; predicative set theory; finitary set theory; CONCATENATION;
D O I
10.1017/bsl.2017.30
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An elementary theory of concatenation, QT(+), is introduced and used to establish mutual interpretability of Robinson arithmetic, Minimal Predicative Set Theory, quantifier-free part of Kirby's finitary set theory, and Adjunctive Set Theory, with or without extensionality. The most basic arithmetic and simplest set theory thus turn out to be variants of string theory.
引用
收藏
页码:381 / 404
页数:24
相关论文
共 19 条
[11]  
Hajek P., 1993, PERSPECTIVES MATH LO
[12]   Finitary Set Theory [J].
Kirby, Laurence .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2009, 50 (03) :227-244
[13]  
Montagna F., 1994, Notre Dame J. Form. Logic, V35, P186
[14]  
Nelson E., 1986, PREDICATIVE ARITHMET
[15]  
Quine W. V., 1946, J SYMBOLIC LOGIC, V11, P105, DOI [10.2307/2268308, DOI 10.2307/2268308]
[16]   On Interpretability in the Theory of Concatenation [J].
Svejdar, Vitezslav .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2009, 50 (01) :87-95
[17]   Pairs, sets and sequences in first-order theories [J].
Visser, Albert .
ARCHIVE FOR MATHEMATICAL LOGIC, 2008, 47 (04) :299-326
[18]   Growing Commas. A Study of Sequentiality and Concatenation [J].
Visser, Albert .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2009, 50 (01) :61-85
[19]   CARDINAL ARITHMETIC IN THE STYLE OF BARON VON MUNCHHAUSEN [J].
Visser, Albert .
REVIEW OF SYMBOLIC LOGIC, 2009, 2 (03) :570-589