MUTUAL INTERPRETABILITY OF ROBINSON ARITHMETIC AND ADJUNCTIVE SET THEORY WITH EXTENSIONALITY

被引:8
作者
Damnjanovic, Zlatan [1 ]
机构
[1] Univ Southern Calif, Sch Philosophy, Los Angeles, CA 90089 USA
关键词
Robinson arithmetic; interpretability; adjunctive set theory; extensionality; string theory; concatenation; predicative set theory; finitary set theory; CONCATENATION;
D O I
10.1017/bsl.2017.30
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An elementary theory of concatenation, QT(+), is introduced and used to establish mutual interpretability of Robinson arithmetic, Minimal Predicative Set Theory, quantifier-free part of Kirby's finitary set theory, and Adjunctive Set Theory, with or without extensionality. The most basic arithmetic and simplest set theory thus turn out to be variants of string theory.
引用
收藏
页码:381 / 404
页数:24
相关论文
共 19 条
[1]  
[Anonymous], MEMOIRS AM MATH SOC
[2]  
[Anonymous], 1953, Undecidable Theories
[3]  
[Anonymous], 1952, P INT C MATH CAMBR M
[4]  
Burgess J. P., 2005, FIXING FREGE
[5]  
Collins GE., 1970, Notre Dame J. Form. Logic, V11, P477
[6]  
DAMNJANOVIC Z., 2016, ARXIV170107548
[7]  
Ferreira F, 2013, B SYMB LOG, V19, P289, DOI [10.2178/bsl.190301, 10.2178/bsl.1903010]
[8]  
GANEA M., 2007, J SYMBOLIC LOGIC, V74, P265
[9]   Undecidability without arithmetization [J].
Grzegorczyk A. .
Studia Logica, 2005, 79 (2) :163-230
[10]  
Grzegorczyk A, 2008, ANDRZEJ MOSTOWSKI AND FOUNDATIONAL STUDIES, P72